• Title/Summary/Keyword: Transgranular

Search Result 110, Processing Time 0.02 seconds

Mechanical Property and Ductile-Brittle Transition Behavior of Ti-Nb-P Added Extra Low Carbon High Strength Steel Sheets (Ti-Nb-P 첨가 극저탄소 고강도 강판의 기계적 성질과 연성-취 천이거동)

  • Park J. J.;Lee O. Y.;Park Y. K.;Han S. H.;Chin K. G.
    • Korean Journal of Materials Research
    • /
    • v.14 no.12
    • /
    • pp.863-869
    • /
    • 2004
  • The purpose of this research is to investigate the mechanical property and ductile-brittle transition temperature of Ti-Nb-P added extra low carbon interstitial free steel having a tensile strength of 440 MPa. The mechanical property and transition temperature of hot rolled steel sheets were more influenced by the coiling temperature rather than by the small amount of alloying element. Further, at the same composition, the property of the specimen coiled at low temperature was superior to that obtained at higher coiling temperature. The fracture surface of 0.005C-0.2Si-1.43Mn steel coiled at $630^{\circ}C$ showed a ductile fracture mode at $-100^{\circ}C$, but coiling at $670^{\circ}C$ showed a transgranular brittle fracture mode at $-90^{\circ}C$. The galvannealed 0.006C-0.07Si-1.33Mn steel sheet annealed at $810^{\circ}C$ has tensile strength and elongation of 442.8 MPa and $36.6\%$, respectively. The transition temperature of galvannealed 0.006C-0.07Si-1.33Mn steel sheet was increased with a drawing ratio, and the transition temperature of the galvannealed 0.006C-0.07Si-1.33Mn steel was $-60^{\circ}C$ at a drawing ratio of 1.8

The Characteristics of Creep for Dispersion Strengthened Copper (분산강화 동합금의 Creep 특성)

  • Park, K.C.;Kim, G.H.;Mun, J.Y.;Choi, J.H.
    • Journal of the Korean Society for Heat Treatment
    • /
    • v.14 no.4
    • /
    • pp.220-227
    • /
    • 2001
  • The static creep behaviors of dispersion strengthened copper GlidCop were investigated over the temperature range of $650{\sim}690^{\circ}C$ (0.7Tm) and the stress range of 40~55 MPa (4.077~5.61 $kg/mm^2$). The stress exponents for the static creep deformation of this alloy was 8.42, 9.01, 9.25, 9.66 at the temperature of 690, 677, 663, and $650^{\circ}C$, respectively. The stress exponent, (n) increased with decreasing the temperature and became dose to 10. The apparent activation energy for the static creep deformation, (Q) was 374.79, 368.06, 361.83, and 357.61 kg/mole for the stress of 40, 45, 50, and 55 MPa, respectively. The activation energy (Q) decreased with increasing the stress and was higher than that of self diffusion of Cu in the dispersion strengthened copper. In results, it can be concluded that the static creep deformation for dispersion strengthened copper was controlled by the dislocation climb over the ranges of the experimental conditions. Larson-Miller parameter (P) for the crept specimens for dispersion strengthened copper under the static creep conditions was obtained as P=(T+460)(logtr+23). The failure plane observed for SEM slightly showed up transgranular at that experimental range, however, universally it was dominated by characteristic of the intergranular fracture.

  • PDF

The Stress Corrosion Cracking Resistance of Heat Treated STS304 Stainless Steel Welded Metal (304 스테인리스강 용접금속의 열처리에 따른 응력부식균열)

  • Cho, D.H.;Kim, H.R.;Nam, T.W.
    • Journal of the Korean Society for Heat Treatment
    • /
    • v.9 no.1
    • /
    • pp.34-44
    • /
    • 1996
  • Austenite stainless steel was produced by arc welding with current 650A, voltage 50V and welding speed 10cm/min. It was post-welded and then heat treated at $1,050^{\circ}C$ for 120min. And then it was immersed in water or in air. The microstructural changes, ferrite contents, mechanical properties, and stress corrosion cracking(SCC) were investigated. The SCC was studied in 42wt% boiling $MgCl_2$($140^{\circ}C$) under the constant stress using SCC elongation curve. The results showed that; 1. The as-welded spedimen seemed to increase ${\delta}$-ferrite content largely, and revealed continuous network of lathy and vermicular type. The post-welded heat treatment changed the morphologies of ferrite from continuous type to island type. 2. The as-welded, air and water quenched specimens had the ${\delta}$-ferrite content 9.7%, 3.2% and 2.1% respectively. We also showed that ${\delta}$-ferrite was Cr-rich and Ni-poor by EPMA. 3. The time of failure on the SCC was measured and it was used for corrosion elongation curve. The condition of SCC was investigated under $35kgf/mm^2$ load and the results were as follows; 4. The intergranullar cracking by stress corrosion was most distinct in weld metal while the transgranular cracking occurred in the air cooled specimen.

  • PDF

The Influence of Vanadium Addition on Fracture Behavior and Martensite Substructure in a Ni-36.5at.%Al Alloy (Ni-36.5at.%Al 합금에서 V 첨가가 파괴거동 및 마르텐사이트 내부조직에 미치는 영향)

  • Kim, Young Do;Choi, Ju;Wayman, C. Marvin
    • Analytical Science and Technology
    • /
    • v.5 no.2
    • /
    • pp.203-211
    • /
    • 1992
  • Fracture behavior and martensite substructure of Ni-36.5at.%Al alloy were investigated with the addition of vanadium which is known as scavenging element of grain boundary. The fracture surfaces were examined by scanning electron microscopy and the EDX spectrometer was applied for composition analysis of fracture surfaces. The substructure of martensite was studied by transmission electron microscopy. By addition of vanadium, fracture surfaces show mixed modes of intergranular and transgranular fracture and more Al content is found on the grain boundaries. For Ni-36.5at.%Al alloy, the planar faults observed in the martensite plates are the internal twins. By increasing the vanadium content, the modulated structure with stacking faults and dislocations dominates while the twinned martensite disappears. The stacking fault is determined to be extrinsic due to the substitution of V for Al. It is concluded that the segregation of sulfur on the high-energy state stacking fault area suppresses the intergranular fracture.

  • PDF

Effect of Aging Treatment on Fracture Characteristics of High Strength Al-Alloy (고력 알루미늄 합금의 파괴특성에 관한 시효처리의 영향)

  • Moon, Chang-Kweon;Oh , Sae-Kyoo
    • Journal of the Korean Society of Fisheries and Ocean Technology
    • /
    • v.20 no.1
    • /
    • pp.23-29
    • /
    • 1984
  • Nowdays, the high strength aluminum alloys are broadly used for structural purpose, but the practical strengthening method by aging treatment are not much available. So that, in this study, in order to investigate the effect of aging treatment for strengthening on the fracture characteristics of the domestic high strength Al alloy (A2024BE), the variations of the aging temperature and time were taken after solution treatment. By microstructural examination, and by SEM fractographs of the fractures, the effects of aging temperature and time were investigated, considering on the fracture behaviour. The results obtained are as follows: 1) It was confirmed by microstructural investigation that the aging temperature of $190^{\circ}C$ and the aging time of 12hours were optimal to get more sound microstructure with distribution of uniform precipitation. 2) By step aging treatment, the proper aging time for obtaining the similar microstructure without any microstructural defects could be shortened in half the normal aging time. 3)By examining the SEM fractographs of the fracture surface, it was found that, regardless of the aging treatment time and temperature, all were intergranular ductile fractures, but the aging treatment at $190^{\circ}C$ for 12 hours resulted in dimple-type-transgranular and intergranular-ductile-frature.

  • PDF

Effects of V and C additions on the Thermal Expansion and Tensile Properties of a High Strength Invar Base Alloy (고강도 인바계 합금의 열팽창 및 인장 특성에 미치는 바나듐과 탄소 원소 첨가 영향)

  • Yun, A.C.;Yun, S.C.;Ha, T.K.;Song, J.H.;Lee, K.A.
    • Transactions of Materials Processing
    • /
    • v.24 no.1
    • /
    • pp.44-51
    • /
    • 2015
  • The current study seeks to examine the effects of V and C additions on the mechanical and low thermal expansion properties of a high strength invar base alloy. The base alloy (Fe-36%Ni-0.9%Co-2.75%Mo-0.7Cr-0.23Mn-0.17Si-0.3%C, wt.%) contains $Mo_2C$ carbides, which form as the main precipitate. In contrast, alloys with additions of 0.4%V+0.3%C (alloy A) or 0.4%V+0.45%C (alloy B) contain $Mo_2C$+[V, Mo]C carbides. The average thermal expansion coefficients of these high strength invar based alloys were measured in the range of $5.16{\sim}5.43{\mu}m/m{\cdot}^{\circ}C$ for temperatures of $15{\sim}230^{\circ}C$. Moreover, alloy B showed lower thermal expansion coefficient than the other alloys in this temperature range. For the mechanical properties, the [V, Mo]C improved hardness and strengths(Y.S. and T.S.) of the high strength invar base alloy. T.S.(tensile strength) and Y.S.(yield strength) of hot forged alloy B specimen were measured at 844.6MPa and 518.0MPa, respectively. The tensile fractography of alloy B exhibited a ductile transgranular fracture mode and voids were initiated between the [V, Mo]C particles and the matrix. Superior properties of high strength and low thermal expansion coefficient can be obtained by [V, Mo]C precipitation in alloy B with the addition of 0.4%V and 0.45%C.

Fabrication and Characterization of Alumina/Silver Nanocomposites

  • Cheon, Seung-Ho;Han, In-Sub;Woo, Sang-Kuk
    • Journal of the Korean Ceramic Society
    • /
    • v.44 no.7
    • /
    • pp.343-348
    • /
    • 2007
  • Alumina/silver nanocomposites were fabricated using a soaking method through a sol-gel route to construct an intra-type nanostructure. The pulse electric-current sintering (PECS) technique was used to sinter the nanocomposites. Several specimens were annealed after sintering. The microstructure, mechanical properties, critical frontal process zone (FPZ) size, and thermo-mechanical properties of the nanocomposites were estimated. The relative densities of the specimens sintered at 1350 and $1450^{\circ}C$ were 95% and 99%, respectively. The maximum value of the three-point bending strength was found to be 780 MPa for the $2{\times}2{\times}10 mm$ specimen sintered at $1350^{\circ}C$. The fracture toughness of the specimen sintered at $1350^{\circ}C$ was measured to be $3.60 MPa{\cdot}m^{1/2}$ using the single-edge V-notched beam (SEVNB) technique. The fracture mode of the nanocomposites was transgranular, in contrast to the intergranular mode of monolithic alumina. The fracture morphology suggested that dislocations were generated around the silver nanoparticles dispersed within the alumina matrix. The specimens sintered at $1350^{\circ}C$ were annealed at $800^{\circ}C$ for 5 min, following which the maximum fracture strength became 810 MPa and the fracture toughness improved to $4.21 MPam^{1/2}$. The critical FPZ size was the largest for the specimen annealed at $800^{\circ}C$ for 5 min. Thermal conductivity of the alumina/silver nanocomposites sintered at $1350^{\circ}C$ was 38 W/mK at room temperature, which was higher than the value obtained with the law of mixture.

A Study on Stress Corrosion Cracking Evaluation with Material Degradation of High Temperature Components (고온부재의 재질열화에 따른 응력부식균열 평가에 관한 연구)

  • Park, Jong-Jin;Yu, Ho-Seon;Jeong, Se-Hui
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.20 no.4
    • /
    • pp.1123-1132
    • /
    • 1996
  • It has been reported that high temperature structural components represent the phenomenon of material degradation according to a long term service under high temperature and pressure. Especially, fossile power plant components using the fossil fuel and heavy oil are affected by dewpoint corrosion of $H_2SO_4$produced during a combustion. Therefore, the service materials subjected to high temperature and pressure may occur the stress corrosion cracking. The object of this paper is to investigate SCC susceptibility according to the material degradation of the high temperature structural materials in dewpoint corrosive environment-$H_2SO_4$.The obtained results are summarized as follows : 1) In case of secondary superheater tube, the fractograph of dimple is observed at the concentration of $H_2SO_4$-5%. When the concentration of $H_2SO_4$ is above 10%, the fracture mode is shifted from a transgranular fracture to an quasi-intergranular fracture according to the increment of concentration. 2) In the relationship between [$\Delta$DBTT]$_sp$ and SCC susceptibility, it is confirmed that the greater material degradation degree is, the higher SCC susceptibility is. In addition, it can be known that SP test is useful test method to evaluate SCC susceptibility for high temperature structural components. 3) When [$\Delta$DBTT]$_sp$ is above 17$17^{\circ}C$ the SCC fracture behavior is definitely observed with SCC susceptibility of above 0.4.

Microstructure Control and Tensile Property Measurements of Hot-deformed γ-TiAl alloy (열간가공된 γ-TiAl 합금의 미세조직 제어 및 기계적 특성 평가)

  • Park, Sung-Hyun;Kim, Jae-Kwon;Kim, Seong-Woong;Kim, Seung-Eon;Park, No-Jin;Oh, Myung-Hoon
    • Journal of the Korean Society for Heat Treatment
    • /
    • v.32 no.6
    • /
    • pp.256-262
    • /
    • 2019
  • The microstructural features and texture development by both hot rolling and hot forging in ${\gamma}-TiAl$ alloy were investigated. In addition, additional heat treatment after hot forging was conducted to recognize change of the microstructure and texture evolution. The obtained microstructural features through dynamic recrystallization after hot deformed ${\gamma}-TiAl$ were quite different because two kinds of formation process were occurred depending on deformation condition. However, analyzed texture tends to be random orientation due to intermediate annealing up to ${\alpha}+{\beta}$ region during the hot deformation process. After additional heat treatment, microstructure transformed into fully lamellar microstructure and randomly oriented texture was also observed due to the same reason as before. Tensile test at room temperature demonstrated that anisotropy of mechanical properties were not appeared and transgranular fracture was occurred between interface of ${\alpha}_2/{\gamma}$. As a result, it could be suggested that microstructural features influenced much more than texture development on mechanical properties at room temperature.

Influence of Hold Time and Stress Ratio on Cyclic Creep Properties Under Controlled Tension Loading Cycles of Grade 91 Steel

  • Kim, Woo-Gon;Park, Jae-Young;Ekaputra, I Made Wicaksana;Kim, Seon-Jin;Jang, Jinsung
    • Nuclear Engineering and Technology
    • /
    • v.49 no.3
    • /
    • pp.581-591
    • /
    • 2017
  • Influences of hold time and stress ratio on cyclic creep properties of Grade 91 steel were systemically investigated using a wide range of cyclic creep tests, which were performed with hold times (HTs) of 1 minute, 3 minutes, 5 minutes, 10 minutes, 20 minutes, and 30 minutes and stress ratios (R) of 0.5, 0.8, 0.85, 0.90, and 0.95 under tension loading cycles at $600^{\circ}C$. Under the influence of HT, the rupture time increased to HT = 5 minutes at R = 0.90 and R = 0.95, but there was no influence at R = 0.50, 0.80, and 0.85. The creep rate was constant regardless of an increase in the HT, except for the case of HT = 5 minutes at R = 0.90 and R = 0.95. Under the influence of stress ratio, the rupture time increased with an increase in the stress ratio, but the creep rate decreased. The cyclic creep led to a reduction in the rupture time and an acceleration in the creep rate compared with the case of monotonic creep. Cyclic creep was found to depend dominantly on the stress ratio rather than on the HT. Fracture surfaces displayed transgranular fractures resulting from microvoid coalescence, and the amount of microvoids increased with an increase in the stress ratio. Enhanced coarsening of the precipitates in the cyclic creep test specimens was found under all conditions.