• Title/Summary/Keyword: Transgene

Search Result 326, Processing Time 0.026 seconds

Production of stable chloroplast-transformed plants in potato (Solanum tuberosum L.) (안정적 감자 엽록체 형질전환 식물체 생산)

  • Min, Sung-Ran;Jeong, Won-Joong;Park, Ji-Hyun;Lyu, Jae-Il;Lee, Jeong-Hee;Oh, Kwang-Hoon;Chung, Hwa-Jee;Liu, Jang-R.
    • Journal of Plant Biotechnology
    • /
    • v.38 no.1
    • /
    • pp.42-48
    • /
    • 2011
  • Chloroplast genetic engineering of higher plants offers several unique advantages compared with nuclear genome transformation, such as high levels of transgene expression, a lack of position effect due to site-specific transgene integration by homologous recombination, multigene engineering in a single transformation event and reducing risks of gene flow via pollen due to maternal inheritance. We established a reproducible chloroplast transformation system of potato using a tobacco specific plastid transformation vector, pCtVG (trnI-Prrn-aadA-mgfp-TpsbA-trnA). Stable transgene integration into chloroplast genomes and the homoplasmic state of the transgenome were confirmed by PCR and Southern blot analyses. Northern, immunoblot analysis, and GFP fluorescence imaging revealed high expression and accumulation of GFP in the plastids of potato leaves. This system would provide new opportunities for genetic improvement and mass production of value added foreign proteins in this crop.

Current status on the modification of the scope for GMO regulation on the gene edited plants with no remnants of inserted foreign DNA fragments (외래 DNA단편이 잔존하지 않는 유전자교정식물에 대한 GMO규제 범위의 제외에 관한 국제 동향)

  • Lee, Shin-Woo
    • Journal of Plant Biotechnology
    • /
    • v.46 no.3
    • /
    • pp.137-142
    • /
    • 2019
  • Gene edited crops can be classified as SDN-1, SDN-2 and SDN-3 group depending on their mutation's range and the usage of donor DNA. The SDN-1 and SDN-2 crops, in particular, could be developed as 100% transgene-free, which do not contain any DNA fragment of the vector or guide RNA used for gene editing such as CRISPR Cas9 system. Therefore, there are no scientific methods available for the detection of these crops and differentiation with the one produced by conventional cross breeding techniques. Additionally, it would be impossible to properly implement the existing GMO regulation law, in particular, the national legislation for "GMO labelling". In this regard, Australia has announced that SDN-1 crops will not be subjected to the existing GMO regulation. Furthermore, Argentina and Brazil have established a new policy that GE crops with no transgene (100% transgene-free crops) should be exempted from the scope of the GMO. In addition, Japan has also announced that "an organism that has no remnants of inserted nucleic acid processed extracellularly is not subjected to the Cartagena Act". It means that SDN-2 crops can also be exempted from the scope of GMO. In this trend, in South Korea, I suggested that gene edited crops with no remnants of inserted foreign DNA fragments should be excluded from the existing GMO regulation. Thus, I expect that diverse elite crop lines should be developed by using advanced gene editing technologies

Production of Transgenic Pigs with an Introduced Missense Mutation of the Bone Morphogenetic Protein Receptor Type IB Gene Related to Prolificacy

  • Zhao, Xueyan;Yang, Qiang;Zhao, Kewei;Jiang, Chao;Ren, Dongren;Xu, Pan;He, Xiaofang;Liao, Rongrong;Jiang, Kai;Ma, Junwu;Xiao, Shijun;Ren, Jun;Xing, Yuyun
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.29 no.7
    • /
    • pp.925-937
    • /
    • 2016
  • In the last few decades, transgenic animal technology has witnessed an increasingly wide application in animal breeding. Reproductive traits are economically important to the pig industry. It has been shown that the bone morphogenetic protein receptor type IB (BMPR1B) A746G polymorphism is responsible for the fertility in sheep. However, this causal mutation exits exclusively in sheep and goat. In this study, we attempted to create transgenic pigs by introducing this mutation with the aim to improve reproductive traits in pigs. We successfully constructed a vector containing porcine BMPR1B coding sequence (CDS) with the mutant G allele of A746G mutation. In total, we obtained 24 cloned male piglets using handmade cloning (HMC) technique, and 12 individuals survived till maturation. A set of polymerase chain reactions indicated that 11 of 12 matured boars were transgene-positive individuals, and that the transgenic vector was most likely disrupted during cloning. Of 11 positive pigs, one (No. 11) lost a part of the terminator region but had the intact promoter and the CDS regions. cDNA sequencing showed that the introduced allele (746G) was expressed in multiple tissues of transgene-positive offspring of No.11. Western blot analysis revealed that BMPR1B protein expression in multiple tissues of transgene-positive $F_1$ piglets was 0.5 to 2-fold higher than that in the transgene-negative siblings. The No. 11 boar showed normal litter size performance as normal pigs from the same breed. Transgene-positive $F_1$ boars produced by No. 11 had higher semen volume, sperm concentration and total sperm per ejaculate than the negative siblings, although the differences did not reached statistical significance. Transgene-positive $F_1$ sows had similar litter size performance to the negative siblings, and more data are needed to adequately assess the litter size performance. In conclusion, we obtained 24 cloned transgenic pigs with the modified porcine BMPR1B CDS using HMC. cDNA sequencing and western blot indicated that the exogenous BMPR1B CDS was successfully expressed in host pigs. The transgenic pigs showed normal litter size performance. However, no significant differences in litter size were found between transgene-positive and negative sows. Our study provides new insight into producing cloned transgenic livestock related to reproductive traits.

Intravenous Delivery of Transgene-Liposome Complexes

  • Park, Seung-Kyu;Kim, Sun-Uk;Cho, Na-Na;Park, Chang-Sik;Lee, Sang-Ho
    • Proceedings of the KSAR Conference
    • /
    • 2004.06a
    • /
    • pp.187-187
    • /
    • 2004
  • Gene delivery is one of the keen interests in animal industry as well as research on gene function. Some of the in vivo gene delivery techniques have been successively used in various tissues for the gene therapy and transgenesis. Despite intensive efforts, it still remains to overcome problems of limited local and regional administration and low transgene expression. (omitted)

  • PDF

EARLY SCREENING OF EXPRESSION OF SV40 DRIVEN LACZ INTRODUCED INTO BOVINE EMBRYOS

  • Nakamura, A.;Okumura, J.;Muramatsu, T.
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.8 no.5
    • /
    • pp.449-454
    • /
    • 1995
  • The present study was conducted to assess gene expression of bacterial lacZ driven by the SV40 promoter at early developmental stages of bovine embryos. The lacZ gene was linearized with BamHI digestion and introduced into the pronucleus by microinjection at 20 hrs after the commencement of in vitro fertilization. Intact bovine blastocysts were not stained with X-Gal, suggesting that there is no endogenous beta-galactosidase activity in these blastocysts. In contrast, the bovine blastocyst cells microinjected with the lacZ gene exerted a characteristic greenish-blue color originating from the bacterial beta-galactosidase activity, albeit at a low rate, i.e. 2.1% of the total fertilized oocytes injected. It was concluded, therefore, that the lacZ gene driven by the SV40 promoter could be used for an indirect screening method in which the presence of transgene is evaluated from the product of transgene expression.

Injection Media Affecting Expression of Transgene Introduced by Direct in vivo Injection into Olive Flounder (Paralichthys of olivaceus) Muscle

  • Dong Soo Kim;Chang Hwa Jeong;Young Sun Cho;Yoon Kwon Nam
    • Journal of Aquaculture
    • /
    • v.12 no.1
    • /
    • pp.71-77
    • /
    • 1999
  • The potential utility of injection media (sucrose, PEG, and liposome) was demonstrated for direct gene transfer into olive flounder (Paralichthys olivaceus) muscles. Based on the use of sucrose (final cone. 20%), PEG 8,000 (final cone. 10%) or liposome (twice us of DNA injected), the present injection strategy significantly improved the level of transgene expression as well as persistent duration of expression. The increased amounts of expression in DNA injection with sucrose, PEG, and liposome were as high as from 2.1 to 4.9-folds of conventional TE-based DNA injection. The best result was obtained from injections of liposome-encapsulated DNA in which the expression was detectable at least 32 days after injection when compared to only 8-16 days from TE-based injections.

  • PDF

Detection of transgene in early developmental stage by GFP monitoring enhances the efficiency of genetic transformation of pepper

  • Jung, Min;Shin, Sun-Hee;Park, Jeong-Mi;Lee, Sung-Nam;Lee, Mi-Yeon;Ryu, Ki-Hyun;Paek, Kee-Yoeup;Harn, Chee-Hark
    • Plant Biotechnology Reports
    • /
    • v.5 no.2
    • /
    • pp.157-167
    • /
    • 2011
  • In order to establish a reliable and highly efficient method for genetic transformation of pepper, a monitoring system featuring GFP (green fluorescent protein) as a report marker was applied to Agrobacteriummediated transformation. A callus-induced transformation (CIT) system was used to transform the GFP gene. GFP expression was observed in all tissues of $T_0$, $T_1$ and $T_2$ peppers, constituting the first instance in which the whole pepper plant has exhibited GFP fluorescence. A total of 38 T0 peppers were obtained from 4,200 explants. The transformation rate ranged from 0.47 to 1.83% depending on the genotype, which was higher than that obtained by CIT without the GFP monitoring system. This technique could enhance selection power by monitoring GFP expression at the early stage of callus in vitro. The detection of GFP expression in the callus led to successful identification of the shoot that contained the transgene. Thus, this technique saved lots of time and money for conducting the genetic transformation process of pepper. In addition, a co-transformation technique was applied to the target transgene, CaCS (encoding capsaicinoid synthetase of Capsicum) along with GFP. Paprika varieties were transformed by the CaCS::GFP construct, and GFP expression in callus tissues of paprika was monitored to select the right transformant.

Transmission and Death Rates in Transgenic Mice Containing Growth Hormone Receptor Gene (성장호르몬수용체 유전자를 지닌 형질전환생쥐의 세대전달율 및 치사율)

  • Kim, H.J.;Jin, D.I.
    • Korean Journal of Animal Reproduction
    • /
    • v.25 no.1
    • /
    • pp.85-90
    • /
    • 2001
  • To study the signaling effect of growth hormone (GH) in vivo on animal physiology, transgenic mice containing GH Receptor (GHR) gene fused to metallothionein promoter were produced by DNA microinjection into one-cell stage embryos. Three founder mice were produced with transgenic mice with approximately 4~6 copies of GHR genes and transgene was transmitted into the progeny. The founder mice were mated with normal mice to produce F$_1$ mice, and intergation and transmission of transgene were checked by polymerase chain reaction and Southern blot methods. Transmission rate of GHR transgenic mice were 20~50% in F$_1$ generation and 50% in F$_2$ generation which means that some founder mice were mosaic and transgene in F$_1$ mice was transmitted to F$_2$ progeny with Mendelian ratio. Death rate of GHR transgenic mice after birth was about 10~30% in F$_1$ and F$_2$ progenies indicating that GHR gene may affect death of transgnenic progeny.

  • PDF