• 제목/요약/키워드: Transforming Growth Factor

검색결과 556건 처리시간 0.036초

Transforming Growth Factor-β: Biology and Clinical Relevance

  • YiKim, Isaac;Kim, Moses M.;Kim, Seong-Jin
    • BMB Reports
    • /
    • 제38권1호
    • /
    • pp.1-8
    • /
    • 2005
  • Transforming growth factor-$\beta$ is a pleiotropic growth factor that has enthralled many investigators for approximately two decades. In addition to many reports that have clarified the basic mechanism of transforming growth factor-$\beta$ signal transduction, numerous laboratories have published on the clinical implication/application of transforming growth factor-$\beta$. To name a few, dysregulation of transforming growth factor-$\beta$ signaling plays a role in carcinogenesis, autoimmunity, angiogenesis, and wound healing. In this report, we will review these clinical implications of transforming growth factor-$\beta$.

Epidermal Growth Factor 와 Transforming Growth Factor-α가 인체 구강편평상피세포암 세포의 성장에 미치는 영향에 관한 실험적 연구 (AN EXPERIMENTAL STUDY ON THE STIMULATORY EFFECTS OF EPIDERMAL GROWTH FACTOR AND TRANSFORMING GROWTH FACTOR-α ON THE GROWTH OF SQUAMOUS CANCER CELL LINES)

  • 박영욱
    • Maxillofacial Plastic and Reconstructive Surgery
    • /
    • 제20권4호
    • /
    • pp.334-340
    • /
    • 1998
  • Stimulatory effects of epidermal growth factor (EGF) and transforming growth $factor-{\alpha}$($TGF-{\alpha}$) on the growth of squamous cancer cell lines established from human oral cancer tissue with moderate differentiation were studied in vitro. After culturing in serum-free media for 24 hours, growth factors-EGF only, $TGF-{\alpha}$ only and EGF, $TGF-{\alpha}$ together-were added to the media and numbers of cells were analyzed by 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) assay and compared with the control at 96, 144 hours. Each of EGF and $TGF-{\alpha}$ showed statistically significant stimulatory effects on the growth of cells respectively. Dose-dependent relationship of the stimulatory effects were not clearly demonstrated. The effects of EGF were higher than those of $TGF-{\alpha}$ and combinative administration showed higher effects than those of single uses. In conclusion, EGF may play an important and major role in differentiation and growth of human oral squamous cancer cells. $TGF-{\alpha}$, produced from cells activated by EGF, also can stimulate the cell growth and could be an alternative ligand for EGF receptor.

  • PDF

Pituitary Tumor-Transforming Gene (PTTG) Induces both Vascular Endothelial Growth Factor (VEGF) and Basic Fibroblast Growth Factor (bFGF)

  • Cho, Sa-Yeon
    • Bulletin of the Korean Chemical Society
    • /
    • 제26권11호
    • /
    • pp.1823-1825
    • /
    • 2005
  • Angiogenesis is tightly regulated by a variety of angiogenic activators and inhibitors. Disruption of the balanced angiogenesis leads to the progress of diseases such as cancer, rheumatoid arthritis, and diabetic blindness. Even though a number of proteins involved in angiogenesis have been identified so far, more protein factors remain to be identified due to complexity of the process. Here I report that pituitary tumor-transforming gene (PTTG) induces migration and tube formation of human umbilical vein endothelial cells (HUVECs). High levels of both vascular endothelial growth factor (VEGF) and basic fibroblast growth factor (bFGF) are detected in conditioned medium obtained from cells transfected with PTTG expression plasmid. Taken together, these results suggest that PTTG is an angiogenic factor that induces production of both VEGF and bFGF.

Transforming Growth Factor-$\beta$2에 의한 연골세포 분화 촉진 효과 (Promoting effects of Transforming growth Factor-$\beta$2 on Chondrogenic Differentiation in vitro)

  • 정재창;손종경박대규강신성
    • 한국동물학회지
    • /
    • 제38권1호
    • /
    • pp.20-25
    • /
    • 1995
  • 계배 limb bud 간충직 연골원성 세포로부터 연골세포로의 분화에 미치는 transforming growth factor-f2(TGF-$\beta$2)의 영향을 알아보기 위하여, Hamburger-Hamilton stages 23/24의 간충직 세포들을 미세배양법으로 배양하면서. TGF-$\beta$2의 농도 및 처리시간에 따른 연골세포의 분화에 미치는 영향을 조사하였다 그 결과 TGF-$\beta$2는 배양 첫 24시간 동안 1-2 ng/ml의 농도로 처리하였을 때 가장 효과적으로 연골세포의 분화를 촉진하였으며, 또한 TGF-$\beta$2의 처리군에서 배양 3일째에 tsss) sulfate의 glycosaminoglvcan으로의 유입량이 현저히 증가함을 보였다 한편. 배양 48시간내에TGF-$\beta$2를 처리한 경우 분화를 촉진 유도한 반면, 배양 48시간 이후에 처리하였을 때에는 분화 촉진 효과가 나타나지 않았다. 이상의 결과로부터 TGF-$\beta$2는 연골원 세포의 분화 초기단계에 세포외기질의 합성을 촉진시켜 세포응축을 유발하고. 세포-세포 및 세포-세포외기질의 상호작용을 증대시킴으로써 연골세포로의 분화를 촉진시킬 것으로 추정되었다.

  • PDF

치주인대세포와 치은섬유아세포의 단백질과 교원질 합성능에 대한 Transforming Growth $Factor-{\beta}$의 효과 (The Effect of the Transforming Growth $Factor-{\beta}$ on Collagen Synthetic Activity of the Human Periodontal Ligament Cells and Human Gingival Fibroblasts)

  • 김미정;이재목;서조영
    • Journal of Periodontal and Implant Science
    • /
    • 제26권2호
    • /
    • pp.429-447
    • /
    • 1996
  • Transforming growth factor $-{\beta}$ is one of the polypeptide growth factors that mediate the activity of mesenchymal cells and regulate wound healing process via cell proliferation, migration and extracellular matrix formation. The purposes of this study is to evaluate the effects of transforming growth factor $-{\beta}$ on the protein synthetic activity of human periodontal ligament cells and human gingival fibroblasts. The cells which were prepared were primary cultured gingival fibroblasts and periodontal ligament cells from humans, and the fourth or sixth subpassage were used in the experiments. Cells were seeded and at a confluent state, 0, 0.5, I, 2.5, 5, 10 ng/ml $TGF-{\beta}$ and $2{\mu]Ci/ml\;[^3H]$ proline were added to the cells and cultured for 24 hours. Then, 1 and 5 ng/ml concentrations were selected and added to confluent cells and cultured for 24 and 48 hours. They were labeled with $2{\mu}Ci/ml\;[^3H]$ proline for 24 hours and a collagen assay was done by the Peterkofsky and Diegelman method. The results were presented as the mean disintegration per minute (dpm) per well and S.D. of four determinations, The results were as follows. : The total protein, collagen and noncollagenous protein synthesis in periodontal ligament cells and gingival fibroblasts were increased dose- dependently by transforming growth factor-p to 2.5-5 ng/ml concentration and decreased at 10 ng/ml concentration. The percent of collagen was slightly changed according to the concentration of transforming growth factor-po The effect of transforming growth $factor-{\beta}$ was not specific for collagen synthesis since it increased the total, noncollagenous and collagenous protein, simultaneously. In the comparison of protein synthetic activity between the human periodontal ligament cells and human gingival fibroblasts, the human gingival fibroblasts had higher activities than the human periodontal ligament cells at all times and concentrations of $TGF-{\beta}$. In the comparison of protein synthetic activity between the 24 hour effect and the 48 hour effect of $TGF-{\beta}$, the 48 hour cultured cells' synthetic activity decreased more than the 24 hour cultured cells at human periodontal ligament cells and human gingival fibroblasts. In conclusion, $TGF-{\beta}$ has important roles in the stimulation of protein synthesis in human periodontal ligament cells and human gingival fibroblasts. Thus, it may be useful for clinical application in periodontal regenerative procedures.

  • PDF

변형성장인자-${\beta}_1$이 치주인대세포와 치은섬유아세포의 증식에 미치는 영향 (THE EFFECT OF TRANSFORMING GROWTH $FACTOR-B_1$ ON THE PROLIFERATION RATE OF HUMAN PERIODONTAL LIGAMENT CELLS AND HUMAN GINGIVAL FIBROBLASTS.)

  • 조은경;이재목;서조영
    • Journal of Periodontal and Implant Science
    • /
    • 제25권3호
    • /
    • pp.720-732
    • /
    • 1995
  • 미분화중배엽세포의 분화에 관여한다고 알려진 변형성장인자-${\beta}1$이 초기배양한 치주인대세포와 치은섬유아세포에 각기 다른 농도와 시간에 따라 변형성장인자-${\beta}1$을 주입했을때 두 세포의 세포증식능에 미치는 영향을 알아보고 각 조건에 따른 두 세포간의 증식능을 상호 비교해 보고자 본 실험을 실시하였다. 교정치료를 목적으로 내원한 환자의 제 1 소구치 부위의 정상치은을 절제하고, 건강한 제 1 소구치를 발거하여 치은섬유아세포와 치주인대세포를 분리, 배양하여 변형성장인자-${\beta}1$을 주입시키지 않은 군을 대조군으로 하고, 변형성장인자-${\beta}1$을 각각 0.25, 0.5, 1, 2.5, 5ng/ml로 주입시킨 군을 실험군으로하여 24시간, 48시간, 72시간 동안 배양하였으며, 각 시간별 배양 24시간 전에 $1{\mu}Ci/ml$ $[^3H]-thymidine$을 첨가하여 $[^3H]-thymidine$이 DNA내로 편재되는 속도로써 두세포군의 증식능을 측정하여 다음과 같은 결과를 얻었다. DNA합성능에 미치는 변형성장인자-${\beta}1$의 효과는 치주인대세포와 치은섬유아세포 모두에서 투여한 변형성장인자-${\beta}1$의 효과는 치주인대세포와 치은섬유아세포 모두에서 투여한 변형성장인자에 대하여 농도의존적으로 세포가 증식 하는 것으로 나타났다. 치은섬유아세포에 변형성장인자-${\beta}1$을 투여한 군에서는 24, 48, 72시간 모두에서 각 대조군에 비하여 농도의존적으로 증가하는 경향을 보였다. 24시간 적용시 대조군에 비해 1,2.5, 5 ng/ml투여군에서 통계적으로 유의한 차이(P<0.05)를 나타내었고, 48시간 적용시에는 대조군에 비해 1, 2.5, 5 ng/ml 투여군에서 통계적으로 유의한 차이(P<0.05)를 나타내었다. 48시간 적용시에 가장 높은 증식능을 보였으며 72시간 적용시에는 48시간 적용에 비해 전반적으로 증식능이 감소하는 경향을 보였다. 치주인대세포의 DNA 합성능에 미치는 변형성장인자-${\beta}$의 효과는, 변형성장인자-${\beta}$를 각각 24시간, 48시간 적용하였을�� 각 대조군에 비하여 농도의존적으로 증가하는 경향을 보였으며, 24시간 적용시에 대조군에 비해 1, 2.5, 5ng/ml 투여군에서 통계적으로 유의한 차이(P<0.05)를 나타내었고, 48시간 적용시에 대조군에 비해 2.5, 5ng/ml 투여군에서 통계적으로 유의한 차이(P<0.05)를 나타애었다. 72시간 적용시에는 5ng/ml의 농도에서 증식능이 감소하는 경향을 보였다. 48시간 적용시에 역시 가장 높은 증식능을 보였으며 72시간 적용에서는 48시간 적용에 비해 전반적으로 증식능이 감소되는 경향을 나타내었다. 변형성장인자-${\beta}1$의 적용에 따른 치주인대세포와 농도별 비교에서 치은섬유아세포군이 치주인대세포군보다 더 높은것으로 나타났다.

  • PDF

Latent Transforming Growth Factor-beta1 Functionalised Electrospun Scaffolds Promote Human Cartilage Differentiation: Towards an Engineered Cartilage Construct

  • Lim, Erh-Hsuin;Sardinha, Jose Paulo;Myers, Simon;Stevens, Molly
    • Archives of Plastic Surgery
    • /
    • 제40권6호
    • /
    • pp.676-686
    • /
    • 2013
  • Background To overcome the potential drawbacks of a short half-life and dose-related adverse effects of using active transforming growth factor-beta 1 for cartilage engineering, a cell-mediated latent growth factor activation strategy was developed incorporating latent transforming growth factor-${\beta}$1 (LTGF) into an electrospun poly(L-lactide) scaffold. Methods The electrospun scaffold was surface modified with NH3 plasma and biofunctionalised with LTGF to produce both random and orientated biofunctionalised electrospun scaffolds. Scaffold surface chemical analysis and growth factor bioavailability assays were performed. In vitro biocompatibility and human nasal chondrocyte gene expression with these biofunctionalised electrospun scaffold templates were assessed. In vivo chondrogenic activity and chondrocyte gene expression were evaluated in athymic rats. Results Chemical analysis demonstrated that LTGF anchored to the scaffolds was available for enzymatic, chemical and cell activation. The biofunctionalised scaffolds were non-toxic. Gene expression suggested chondrocyte re-differentiation after 14 days in culture. By 6 weeks, the implanted biofunctionalised scaffolds had induced highly passaged chondrocytes to re-express Col2A1 and produce type II collagen. Conclusions We have demonstrated a proof of concept for cell-mediated activation of anchored growth factors using a novel biofunctionalised scaffold in cartilage engineering. This presents a platform for development of protein delivery systems and for tissue engineering.

A Single Nucleotide Polymorphism in Transforming Growth Factor-$\beta$ type II Receptor of the Rat

  • Ryu, Doug-Young
    • Toxicological Research
    • /
    • 제16권1호
    • /
    • pp.59-61
    • /
    • 2000
  • A single nucleotide polymorphism in the transforming growth factor-$\beta$ type II receptor (TGE$\beta$RII) gene of the rat was studied. TGF$\beta$RII is a tumor suppressor that is frequently inactivated by mutation in human colon cancers. A novel nucleotide polymorphism of G to A(or A to G), which causes a silent mutation at codon 129, was found in G:C rich sequence in the TGF$\beta$RII gene of Sprague-Dawley rats. The results suggest that genetic polymorphism occures without a strain of the laboratory animal.

  • PDF

Targeting the Transforming Growth Factor-β Signaling in Cancer Therapy

  • Sheen, Yhun Yhong;Kim, Min-Jin;Park, Sang-A;Park, So-Yeon;Nam, Jeong-Seok
    • Biomolecules & Therapeutics
    • /
    • 제21권5호
    • /
    • pp.323-331
    • /
    • 2013
  • TGF-${\beta}$ pathway is being extensively evaluated as a potential therapeutic target. The transforming growth factor-${\beta}$ (TGF-${\beta}$) signaling pathway has the dual role in both tumor suppression and tumor promotion. To design cancer therapeutics successfully, it is important to understand TGF-${\beta}$ related functional contexts. This review discusses the molecular mechanism of the TGF-${\beta}$ pathway and describes the different ways of tumor suppression and promotion by TGF-${\beta}$. In the last part of the review, the data on targeting TGF-${\beta}$ pathway for cancer treatment is assessed. The TGF-${\beta}$ inhibitors in pre-clinical studies, and Phase I and II clinical trials are updated.

Transforming Growth Factor-${\beta}$ (TGF-${\beta}$) Induces Invasion and Migration of Ras- Transformed MCF10A Human Breast Epithelial Cells

  • Kim, Mi-Sung;Moon , A-Ree
    • 대한약학회:학술대회논문집
    • /
    • 대한약학회 2002년도 Proceedings of the Convention of the Pharmaceutical Society of Korea Vol.2
    • /
    • pp.327.3-328
    • /
    • 2002
  • Transforming growth factor-${\beta}$ (TGF-${\beta}$), a hormonally active polypeptide found in normal and transformed tissues. regulates cellular growth and phenotyphic plasticity. We have previously shown that H-ras. but not N-ras. induces invasive phenotype in MCF10A human breast epithelial cells. In this study. we wished to examine the effect of TGF-${\beta}$ on H-ras-induced invasion and motility in MCFI 10A cells by performing in vitro invasion assay and wound migration assay. (omitted)

  • PDF