• 제목/요약/키워드: Transformer design

Search Result 903, Processing Time 0.023 seconds

Design of the High Density Power Supply with Flat Transformer (Flat Transformer를 적용한 고밀도 전원장치 설계)

  • Baek J.W.;Kim J.H.;Yoo D.W.;Kim J.S.;Ryu M.H.
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.10 no.3
    • /
    • pp.248-256
    • /
    • 2005
  • This paper presents the design method of the DC/DC converter using flat transformer which is suitable for midium or large capacity and high density power supply. Flat transformer module is composed and manufactured of multi-transformers in parallel and has a number of parallel single turn secondary windings. Therefore, its leakage inductance is highly decreased and it is more suitable for high frequency operation than conventional one. In this paper, we manufactured and tested 750W AC/DC converter with variable output powers to verify the performance of the flat transformer.

A study on design method for high frequency transformer with high inulation voltage (높은 절연전압을 갖는 고주파 변압기 설계 방법에 관한 연구)

  • Kang, Kyoung Pil;Kim, Ho-Sung;Cho, Jintae;Cho, Younghoon
    • Proceedings of the KIPE Conference
    • /
    • 2017.11a
    • /
    • pp.27-28
    • /
    • 2017
  • In this paper, design method for a high frequency transformer with high insulation is presented. The insulation performance of the high frequency transformer is determined by the distance between primary and secondary windings, and the characteristics of dielectric material. For the voltage strength safty, a high frequency transformer model is designed. By using computer simulation, the transformer model is evaluated.

  • PDF

A Study on the Design of Electrolysis Power Using Inverter (인버터를 이용한 전기분해전원 설계에 과한 연구)

  • 이정민;목형수;최규하;최동규
    • Proceedings of the KIPE Conference
    • /
    • 1998.11a
    • /
    • pp.55-59
    • /
    • 1998
  • By this time, Diode Rectifier or SCR has been used to gain DC Voltage for Electrolysis Power. Generally DC Voltage is produced from rectifier shall be transformed before rectifier using step-down transformer to obtain adaptable DC Voltage, rectifier output. In the same way, rectifier using SCR shall obtain output voltage after step-down voltage through transformer and control of the SCR firing angle. Transformer shall be used for this two methods to adjust the voltage. But the size and weight of the transformer are increased in accordance with the increase of capacity, and the hardships are accompanied in workspace or transportation. Besides, only the value of input voltage is possible to be regulated, and the expectation of current control is almost impossible during Electrolysis. This study has conducted Design and Simulation to reduce the size and weight of transformer and to be enable voltage and current control of Electrolysis power through high-speed switching using Inverter, Electronics device.

  • PDF

A Study on Analysis and Design of HVC Embedded High Frequency Transformer for Microwave Oven (Inverter 구동 Microwave Oven용 HVC 내장형 고주파변압기의 해석 및 설계에 관한 연구)

  • Park, K.H.;Cho, J.S.;Mok, H.S.;Choe, G.H.
    • Proceedings of the KIEE Conference
    • /
    • 2001.04a
    • /
    • pp.293-296
    • /
    • 2001
  • A conventional power supply to drive a microwave oven has ferro-resonant transformer and high voltage capacitor(HVC). Though it is simple, transformer is bulky, heavy and has low-efficiency. To improve this defect, a high frequency inverter type power supply has been investigated and developed in recent years. But, because of additional control circuit and switching device, inverter-type power supply is more expensive than conventional one. In this study, The design procedure of a novel HVC embedded high frequency transformer is proposed for down-sizing and cost reduction of Inverter-type power supply. Also, equivalent circuit mode] is derived by FEM analysis and impedance measurements. And the operation of proposed HVC embedded transformer is verified by simulations and experimental results.

  • PDF

LLC Resonant Converter Using A Novel Planar Transformer (새로운 형상의 평면변압기를 이용한 LLC 공진컨버터)

  • Lee, Seung-Min;Noh, Young-Jae;Kang, Cheol-Ha;Jang, Sang-Ho;Kim, Eun-Soo;Chung, Bong-Gun
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.16 no.6
    • /
    • pp.627-637
    • /
    • 2011
  • To cope with the high power density and low cost in switching power supply, this paper presents a novel planar transformer, which can regulate the leakage inductance of planar transformer used for LLC resonant converter. Modeling and analysis of a novel planar transformer are discussed in detail and a prototype 200W LLC resonant converter is tested to verify.

Design of a IMVA Single-Phase HTS Power Transformer

  • Kim, Sung-Hoon;Kim, Woo-Seok;Park, Chan-Bae;Hahn, Song-yop;Park, Kyeong-Dal;Joo, Hyeong-Gil;Hong, Gye-Won
    • Progress in Superconductivity
    • /
    • v.4 no.1
    • /
    • pp.86-89
    • /
    • 2002
  • In this paper, the design of a IMVA single-phase high temperature superconducting(HTS) power transformer with BSCCO-2223 HTS tapes is presented. The rated voltages of each sides of the transformer are 22.9 ㎸ and 6.6 ㎸, respectively The winding of 1MVA HTS transformer is consisted of double pancake type HTS windings, which have advantages of insulation and distribution of high voltage, and are cooled by subcooled liquid nitrogen of 65K. Four HTS tapes were wound in parallel for the windings of low voltage side and the four parallel conductors are transposed. The design of 1MVA HTS transformer, a shell type core made of laminated silicon steel plate is chosen, and the core is separated with the windings by a cryostat with a room temperature bore. The cryostat made of non-magnetic and non-conducting material and a liquid nitrogen sub-cooling system is designed in order to maintain the coolant's temperature of 65K. For electromagnetic analysis of 1MVA HTS transformer, a finite element method of an axis of symmetry is used. The maximum perpendicular component of magnetic flux density of pancake windings is about 0.15T. And through analyzing the magnetic field distribution, an optimal winding arrangement of 1MVA HTS transformer is obtained.

  • PDF

Review on Magnetic Components: Design & Consideration in VHF Circuit Applications

  • Yahaya, Nor Zaihar;Raethar, Mumtaj Begam Kassim;Awan, Mohammad
    • Journal of Power Electronics
    • /
    • v.9 no.2
    • /
    • pp.180-187
    • /
    • 2009
  • When converters operate in megahertz range, the passive components and magnetic devices generate high losses. However, the eddy current issues and choices of magnetic cores significantly affect on the design stage. Apart from that, the components' reduction, miniaturization technique and frequency scaling are required as well as improvement in thermal capability, integration technique, circuit topologies and PCB layout optimization. In transformer design, the winding and core losses give great attention to the design stage. From simulation work, it is found that E-25066 material manufactured by AVX could be the most suitable core for high frequency transformer design. By employing planar geometry topology, the material can generate significant power loss savings of more than 67% compared to other materials studied in this work. Furthermore, young researchers can use this information to develop new approaches based on concepts, issues and methodology in the design of magnetic components for high frequency applications.

Numerical Analysis and Design of Moving Contactless High Power Transformer

  • Lee, Dong-Su;Jang, Dong-Uk;Kim, Hyung-Chul;Jung, Sang-Yong
    • Journal of Magnetics
    • /
    • v.16 no.4
    • /
    • pp.423-426
    • /
    • 2011
  • This paper presents numerical analysis and design of high power contactless transformer with a large air-gap for moving on a guided linear track which is appropriate for high-speed train or MAGLEV. The system has the typical characteristics of large leakage inductance, small magnetizing inductance, and low coupling coefficients giving rise to lower power transfer efficiency, which have been compensated by the purposely-designed contactless transformer coupled with the resonant converter modulating with high switching frequency. In particular, the best model selected from the generated six design candidates has been applied for 3D Finite Element Analysis (FEA) investigating on iron loss to evaluate the overall system efficiency.

Design of the gate drive circuit for floating MOSFET using the pulse transformer (펄스 변압기를 이용한 비접지 MOSFET의 게이트 구동 회로 설계)

  • Park, Chong-Yeun;Lee, Bong-Jin
    • Journal of Industrial Technology
    • /
    • v.27 no.B
    • /
    • pp.15-20
    • /
    • 2007
  • This paper presents the new design method for the gate driver circuit of the floating MOSFET by using the pulse transformer. Each parameters of the proposed circuit are delivered by the numerical calculation method. By considering inner characteristics of MOSFET, the gate driver makes to increase the efficiency of the power conversion and decrease operating heat. Computer simulations and to experimental results for a Buck Converter are presented in order to validate the proposed method.

  • PDF

A Study on Characteristics of Step-down Piezoelectric Transformer Using Contour Extended Vibration Mode (경방향 확장 진동모드를 이용한 강압용 압전변압기의 특성에 관한 연구)

  • Lee, Won-Jae;Min, Bok-Ki;Song, Jae-Sung;Chong, Hyon-Ho;Park, Tae-Gon
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2002.07b
    • /
    • pp.638-641
    • /
    • 2002
  • This paper presents design and construct of flat type step-down piezoelectric transformer for the application to AC-adapters. This piezoelectric transformer operated in resonance vibration mode. In this paper, Finite element method(FEM) was used for analysis piezoelectric transformers. Vibration mode and electric field of piezoelectric transformer at resonance frequency were simulated. Using this simulation, we manufactured flat type piezoelecric transformer and measured its output characteristics. As results, output power was linearly increased by increasing input power at resonance frequency. And it was found that the transformer exhibited an output power of 11.4[W] at 60[V] input voltage. From these results, we expect that this piezoelecric transformer can be applied to AC adapters.

  • PDF