• Title/Summary/Keyword: Transformational sequence

Search Result 4, Processing Time 0.019 seconds

Transformation Behaviour of High Temperature Thermoelectric $FeSi_2$ (고온열전재료 $FeSi_2$의 변태거동)

  • Eun, Young-Hyo;Min, Byoung-Gue;Lee, Dong-Hi
    • Applied Microscopy
    • /
    • v.25 no.3
    • /
    • pp.90-98
    • /
    • 1995
  • In the Fe-Si system, a mixture of a($Fe_{2}Si_5$) - and ${\epsilon}$(FeSi)-composition powders was sintered and heat-treated subsequently at various temperatures and time to get thermoelectric ${\beta}$-phase($FeSi_2$) compacts. The different transformational sequences depending on the heat treating temperature were found through the investigation into phase transformation and microstructural development. That is, a rapid eutectoid decomposition of ${\alpha}{\to}{\beta}+Si$ occurred together with a accompanying slow reaction between the dispersed Si formed by above decomposition and the preexisted ${\epsilon}$ phase at temperatures below $830^{\circ}C$. The unreacted Si and the micropores formed due to the density change upon the transformation coarsened as heat treating time elapsed. At temperatures above $880^{\circ}C$, however, transformation was proceeded by a peritectoid reaction of ${\alpha}+{\epsilon}{\to}{\beta}$. It took at least 200min. to achieve 90% volume fracion of transformed ${\beta}$ phase, and the growth of micro-pores was also observed in this transformational sequence with prolonged heat treating time.

  • PDF

A Structure and Framework for Sign Language Interaction

  • Kim, Soyoung;Pan, Younghwan
    • Journal of the Ergonomics Society of Korea
    • /
    • v.34 no.5
    • /
    • pp.411-426
    • /
    • 2015
  • Objective: The goal of this thesis is to design the interaction structure and framework of system to recognize sign language. Background: The sign language of meaningful individual gestures is combined to construct a sentence, so it is difficult to interpret and recognize the meaning of hand gesture for system, because of the sequence of continuous gestures. This being so, in order to interpret the meaning of individual gesture correctly, the interaction structure and framework are needed so that they can segment the indication of individual gesture. Method: We analyze 700 sign language words to structuralize the sign language gesture interaction. First of all, we analyze the transformational patterns of the hand gesture. Second, we analyze the movement of the transformational patterns of the hand gesture. Third, we analyze the type of other gestures except hands. Based on this, we design a framework for sign language interaction. Results: We elicited 8 patterns of hand gesture on the basis of the fact on whether the gesture has a change from starting point to ending point. And then, we analyzed the hand movement based on 3 elements: patterns of movement, direction, and whether hand movement is repeating or not. Moreover, we defined 11 movements of other gestures except hands and classified 8 types of interaction. The framework for sign language interaction, which was designed based on this mentioned above, applies to more than 700 individual gestures of the sign language, and can be classified as an individual gesture in spite of situation which has continuous gestures. Conclusion: This study has structuralized in 3 aspects defined to analyze the transformational patterns of the starting point and the ending point of hand shape, hand movement, and other gestures except hands for sign language interaction. Based on this, we designed the framework that can recognize the individual gestures and interpret the meaning more accurately, when meaningful individual gesture is input sequence of continuous gestures. Application: When we develop the system of sign language recognition, we can apply interaction framework to it. Structuralized gesture can be used for using database of sign language, inventing an automatic recognition system, and studying on the action gestures in other areas.

Effect of Electrical Field on the Phase Transformation of 0.7Pb(Mg1/3Nb2/3)O3-0.3PbTiO3 Single Crystals (단결정 0.7Pb(Mg1/3Nb2/3)O3-0.3PbTiO3 의 상전이에 미치는 전장의 영향)

  • Lee, Eun-Gu
    • Korean Journal of Materials Research
    • /
    • v.23 no.6
    • /
    • pp.329-333
    • /
    • 2013
  • The structural phase transformations of $0.7Pb(Mg_{1/3}Nb_{2/3})O_3-0.3PbTiO_3$ (PMN-0.3PT) were studied using high resolution x-ray diffraction (HRXRD) as a function of temperature and electric field. A phase transformational sequence of cubic (C)${\rightarrow}$tetragonal (T)${\rightarrow}$rhombohedral (R) phase was observed in zero-field-cooled conditions; and a $C{\rightarrow}T{\rightarrow}$monoclinic $(M_C){\rightarrow}$ monoclinic ($M_A$) phase was observed in the field-cooled conditions. The transformation of T to $M_A$ phase was realized through an intermediate $M_C$ phase. The results also represent conclusive and direct evidence of a $M_C$ to $M_A$ phase transformation in field-cooled conditions. Beginning from the zero-field-cooled condition, a $R{\rightarrow}M_A{\rightarrow}M_C{\rightarrow}T$ phase transformational sequence was found with an increasing electric field at a fixed temperature. Upon removal of the field, the $M_A$ phase was stable at room temperature. With increasing the field, the transformation temperature from T to $M_C$ and from $M_C$ to $M_A$ phase decreased, and the phase stability ranges of both T and $M_C$ phases increased. Upon removal of the field, the phase transformation from R to $M_A$ phase was irreversible, but from $M_A$ to $M_C$ was reversible, which means that $M_A$ is the dominant phase under the electric field. In the M phase region, the results confirmed that lattice parameters and tilt angles were weakly temperature dependent over the range of investigated temperatures.

From Trauma To growth: Posttraumatic Growth Clock (외상 후 병리에서 성장으로: 외상 후 성장 시계)

  • Lee, Hong-Seock
    • Korean Journal of Cognitive Science
    • /
    • v.27 no.4
    • /
    • pp.501-539
    • /
    • 2016
  • The human mind is a self-evolving system that develops along a multidimensional hierarchical pathway in response to traumatic stimulus. In absence of trauma, a mind integrated in conflict-free state is called monistic. When the monistic mind responses to a traumatic stimulus, a response polarity forms toward stimulus polarity within the mind, turning it into a bipartite structure. Dialectical interaction between the two opposites, originating from their incompatibility, creates a new third polarity in the upper dimension. Thereby, the mind turns into a trinity structure. When the interaction among the three polarities becomes optimized, the plasticity of the mind gets maximized into the "far-from-equilibrium state," and the function of three polarities is synchronized. Through this recalibration, the mind returns back to its monistic structure. If the mind with the recurred monistic structure responds to another traumatic stimulus, this cycle of hierarchical transformation repeats itself in this cyclical and fractal growth process through synchronization of basic trinity system. Applying this concept to the process of post-traumatic growth (PTG), this paper explores how the mind transforms traumatic experiences into PTG and proposes a 'PTG Clock' that shows a fundamental sequence in the development of the human mind. The PTG Clock consists of seven hierarchical phases, and each of the first six phases has two opposite sub-phases: shocked/numbed, feared/intrusive, paranoid/avoidant, obsessional/explosive, dependent/depressive, and meaningless/searching for meaning. The seventh, the synchronization phase, completes one cycle of the mind's transformation, realizing a grand trinity system, where the mind synchronizes its biological, social, and existential dimensions. At that point, the mind becomes more susceptible to not only the stimulus of its own traumatic experience but also the pain of others. Thereby, the PTG Clock sets out on a journey to another cycle of transformation in higher dimensions. The validity of this transformational process for the PTG Clock will be examined by comparing it to Horowitz's theory of stress response syndrome.