• 제목/요약/키워드: Transformation Plasticity

검색결과 144건 처리시간 0.019초

사각판재 보론강을 사용한 유체냉각공정에서의 열변형 해석 (Thermal Deformation Simulation of Boron Steel Square Sheet in Fluid Cooling Process)

  • 서창희;권태하;전효원;오상균;박춘달;최현열;문원식
    • 소성∙가공
    • /
    • 제26권1호
    • /
    • pp.5-10
    • /
    • 2017
  • Fluid cooling is one of the manufacturing processes used to control mechanical properties, and is recently used for hot stamping of automobile parts. The formed part at room temperature is heated and then cooled rapidly using various fluids in order to obtain better mechanical properties. The formed part may undergo excessive thermal deformation during rapid cooling. In order to predict the thermal deformation during fluid cooling, a coupled simulation of different fields is needed. In this study, cooling simulation of boron steel square sheet was performed. Material properties for the simulation were calculated from JMatPro, and three convection heat transfer coefficients such as water, oil and air were obtained from the experiments. It was found that the thermal deformation increased when the difference of cooling rate of sheet face increased, and the thermal deformation increased when the thickness of sheet decreased.

핫 포밍을 이용한 고강도 보론 첨가 강의 기계적 및 성형 특성 평가 (Mechanical and Forming Characteristics of High-Strength Boron-Alloyed Steel with Hot Forming)

  • 채명수;이기동;서영성;이경훈;김영석
    • 소성∙가공
    • /
    • 제18권3호
    • /
    • pp.236-244
    • /
    • 2009
  • In response to growing environmental and collision-safety concerns, the automotive industry has gradually used high-strength and ultla-high-strength steels to reduce the weight of automobiles. In order to overcome inherent process disadvantages of these materials such as poor formability and high springback at room temperature, hot forming has recently been developed and adopted to produce some important structural parts in automobiles. This method enables manufacturing of components with complex geometric shapes with minimal springback. In addition, a quenching process may enhance the material strength by more than two times. This paper investigates mechanical and forming characteristics of high-strength boron-alloyed steel with hot forming, in terms of hardness, microstructure, residual stress, and springback. In order to compare with experimental results, a finite element analysis of hot forming process coupled with phase transformation and heat transfer was carried out using DEFORM-3D V6.1 and also, to predict high temperature mechanical properties and flow curves for different phases, a material properties modeler, JMatPro was used.

금속분말 사출성형된 Ti-6Al-4V 합금의 미세조직 및 기계적 물성 (Microstructure and Mechanical Properties of Ti-6Al-4V Alloy Processed by Metal Injection Molding)

  • 김민준;백승훈;윤동근;이은혜;김종하;고영건
    • 소성∙가공
    • /
    • 제29권5호
    • /
    • pp.251-256
    • /
    • 2020
  • The purpose of this study is to investigate the effect of sintering condition on the microstructure evolution and tensile properties of the Ti-6Al-4V alloy sample processed by metal injection molding (MIM) in terms of the sizes of the alpha morphology and pore found in the matrix. For this purpose, a series of MIM were conducted on this sample at various sintering temperatures ranging from 1173 to 1373 K for three hours followed by furnace cooling, observed by the scanning electron microscopy. The microstructures sintered in this study showed that, with increasing sintering temperature over beta transus temperature, the transformation of the equiaxed alpha into transformed beta was attained while the size of pores would tend to decrease. Thus, the strength remained unchanged significantly in the tension while ductility increased to some extent as sintering temperature increased. Such mechanical behavior would be explained in relation to the microstructure evolution of the Ti-6Al-4V sample via the MIM.

TRIP형 복합조직강판의 기계적특성에 미치는 열처리 방법 (The Effect of Heat Treatment on Mechanical Properites of TRIP-Aided Dual Phase Steel)

  • 이상훈;이영섭;김용성;박현순
    • 열처리공학회지
    • /
    • 제10권2호
    • /
    • pp.128-137
    • /
    • 1997
  • The formation processes of the retained austenite(${\gamma}_R$) in SHCP100 steel sheets were investigated in order to improve the transformation induced plasticity(TRIP) effect of ${\gamma}_R$. An excellent combination of elongation about 23% and high strength over 830 MPa was achieved by processing of intercritical annealing and isothermal holding. The mechanical properties of TRIP-aided dual phase steel was found to depend on the volume ratio of each phase and the volume fraction of ${\gamma}_R$. It was also noted that the proper mechanical stability of ${\gamma}_R$ improved the mechanical properties. In this work, the best balance of strength-ductility was obtained by holding the steel at $420^{\circ}C$ for 500sec. after annealing at $730^{\circ}C$ for 300 sec.

  • PDF

고질소 Fe-l8Cr-l8Mn-2Mo-0.9N 강의 미끄럼 마멸 기구 (Sliding Wear Mechanism of the High-Nitrogen Austenitic 18Cr-l8Mn-2Mo-0.9N Steel)

  • 김승덕;김성준;김용석
    • 소성∙가공
    • /
    • 제15권2호
    • /
    • pp.112-117
    • /
    • 2006
  • Sliding wear mechanism of a high nitrogen austenitic 18Cr-18Mn-2Mo-0.9N steel has been investigated. Dry sliding wear tests of the steel were carried out at various loads of IN-10N under a constant sliding speed condition of 0.15m/s against AISI 52100 bearing steel balls. Solution ($1050^{\circ}C$) and isothermal aging ($900^{\circ}C$) heat treatments were performed on the steel and the effect of the heat treatments on the wear was investigated. Wear rates of the solution-treated steel specimen remained low until 5N load, and then increased abruptly at loads above 5N. The rates of isothermally aged specimens were low and increased gradually with the applied load. Worn surfaces, their cross sections, and wear debris of the steel specimens were examined with a scanning electron microscopy. Phases of the heat-treated specimen and the wear debris were identified using XRD. The transformed phase underneath a sliding track was investigated and analyzed using a TEM. Effects of the phase transformation during the wear and $Cr_{2}N$ precipitates formed during the isothermal aging on the wear of the austenitic steel were discussed.

X80급 API 강의 바우싱거 효과에 미치는 미세조직의 영향 (The Influence of Microstructure on the Bauschinger Effect in X80 Grade API Steel)

  • 박재신;김대우;장영원
    • 소성∙가공
    • /
    • 제15권2호
    • /
    • pp.118-125
    • /
    • 2006
  • API steel is used for line-pipe to transport the oil and natural gas. As the recent trends in the development of API steel are towards the use of larger diameter and thicker plate, many researches have been studied to achieve higher strength, higher toughness and lower yield ratio in API steel. However, the strength of API steel after pipe forming is changed depending on the competition of the Bauschinger effect and work hardening which are affected by the strain history during pipe forming process. So, the purpose of this study is to investigate the influence of microstructure on the Bauschinger effect for API steel. To change the microstructure of API steel we have changed the hot rolling condition and the amounts of V and Cu addition. The compression-tensile test and the microstructure observation by OM and TEM were conducted to investigate the yield strength drop and the correlation between the Bauschinger effect and microstructure of API steel. The experimental results show that the increase of polygonal ferrites volume fraction increases the Baushcinger effect due to the back stress which comes from the increase of mobile dislocation density at polygonal ferrite interior during the compressive deformation. The hot rolling condition was more effective on the Bauschinger effect in API steel than the small amount of V and Cu addition.

60TRIP강을 적용한 차체의 측면충돌 해석 (Side Impact Analysis of an Auto-body with 60TRIP Steel for Side Members)

  • 임지호;김기풍;허훈
    • 한국자동차공학회논문집
    • /
    • 제11권2호
    • /
    • pp.164-171
    • /
    • 2003
  • The side impact behavior has been investigated when the high strength steel 60TRIP(Transformation Induced Plasticity) is replaced for the conventional low-carbon steel for weight reduction of an auto-body. The side impact analysis was carried out as specified in US-SINCAP with the center pillar and the side sill of the conventional steel or 60TRIP. For accurate impact analyses, the dynamic material properties are adopted with the Johnson-Cook model. The analysis results demonstrate that the penetration of the side members is remarkably reduced when 60TRIP is employed for the center pillar and the side sill replacing the conventional steel. The crashworthiness in the side impact is considerably improved with less penetration of the side members and less acceleration of the opposite floor.

Cu 함유 TRIP형 고장력 강판의 잔류오스테나이트 및 인장특성에 관한 연구 (A Study on the Retained Austenite and Tensile Properties of TRIP Type High Strength Steel Sheet with Cu)

  • 강창룡;김효정;김한군;성장현;문원진
    • 열처리공학회지
    • /
    • 제12권3호
    • /
    • pp.231-239
    • /
    • 1999
  • Volume fraction and morphology of retained austenite, tensile properties of TRIP type high strength steel sheet with Fe-C-Si-Mn-Cu chemical composition have been investigated. The retained austenite of granular, bar and film type existing in specimen was obtained after intercritical annealing and austempering. The granular type retained austenite increased with increase of intercritical annealing and austempering temperature. With increase of intercritical annealing temperature, retained austenite and carbon contents increased. Maximum contents of retained austenite was obtained by austempering at $400^{\circ}C$. The maximum tensile strength was obtained by austempering at $450^{\circ}C$ and maximum elongation was obtained at $400^{\circ}C$. T.S${\times}$E.L value increased with increase of retained austenite contents due to the elongation strongly controlled by contents of retained austenite, but tensile strength was affected with various factors such as bainitic structure etc.

  • PDF

구리와 니켈이 포함된 Fe-9Mn-0.2C-3Al-0.5Si 중망간강의 미세조직과 기계적 특성에 미치는 2상역 어닐링의 영향 (Effect of Intercritical Annealing on Microstructure and Mechanical Properties of Fe-9Mn-0.2C-3Al-0.5Si Medium Manganese Steels Containing Cu and Ni)

  • 이승완;신승혁;황병철
    • 한국재료학회지
    • /
    • 제30권1호
    • /
    • pp.44-49
    • /
    • 2020
  • The effect of intercritical annealing temperature on the microstructure and mechanical properties of Fe-9Mn-0.2C-3Al-0.5Si medium manganese steels containing Cu and Ni is investigated in this study. Six kinds of medium manganese steels are fabricated by varying the chemical composition and intercritical annealing temperature. Hardness and tensile tests are performed to examine the correlation of microstructure and mechanical properties for the intercritical annealed medium manganese steels containing Cu and Ni. The microstructures of all the steels are composed mostly of lath ferrite, reverted austenite and cementite, regardless of annealing temperature. The room-temperature tensile test results show that the yield and tensile strengths decrease with increasing intercritical annealing temperature due to higher volume fraction and larger thickness of reverted austenite. On the other hand, total and uniform elongations, and strain hardening exponent increase due to higher dislocation density because transformation-induced plasticity is promoted with increasing annealing temperature by reduction in reverted austenite stability.

Influence of Selective Oxidation Phenomena in CGLs on Galvanized Coating Defects Formation

  • Gong, Y.F.;Birosca, S.;Kim, Han S.;De Cooman, B.C.
    • Corrosion Science and Technology
    • /
    • 제7권1호
    • /
    • pp.1-5
    • /
    • 2008
  • The gas atmosphere in continuous annealing and galvanizing lines alters both composition and microstructure of the surface and sub-surface of sheet steel. The formation and morphology of the oxides of alloying elements in High Strength Interstitial Free (HS-IF), Dual Phase (DP) and Transformation-Induced Plasticity (TRIP) steels are strongly influenced by the furnace dew point, and the presence of specific oxide may result in surface defects and bare areas on galvanized sheet products. The present contribution reviews the progress made recently in understanding the selective formation of surface and subsurface oxides during annealing in hot dip galvanizing and conventional continuous annealing lines. It is believed that the surface and sub-surface composition and microstructure have a pronounced influence on galvanized sheet product surface quality. In the present study, it is shown that the understanding of the relevant phenomena requires a combination of precise laboratory-scale simulations of the relevant technological processes and the use of advanced surface analytical tools.