• Title/Summary/Keyword: Transformation Model of Agency and Structure

Search Result 4, Processing Time 0.019 seconds

An Explorative Study on Theoretical Potential of Critical Realism as Social Welfare Paradigm (사회복지 패러다임(paradigm)으로서 비판적 실재론의 가능성에 대한 탐색적 연구)

  • Woo, Ah Young;Kim, Giduk
    • Korean Journal of Social Welfare Studies
    • /
    • v.44 no.2
    • /
    • pp.465-497
    • /
    • 2013
  • This paper criticizes the ontological and epistemological dichotomy in social sciences including social welfare and probes into Critical Realism as an alternative paradigm. Many theories for social welfare have adhered to dichotomous ontological standpoint, 'agency' vs. 'social structure', and Eco-system approach have occupied dominant position to integrate this dichotomy. These theoretical standpoint have had great influence on social work practice. On the other hand, dichotomous epistemological standpoint which is constituted of different views of phenomena, 'positivism' and 'constructionism', have had great influence on social work research and practice. These dichotomous ontological and epistemological approach have a limit to reveal qualitative nature of the relationship between agency and social structure, to ponder the deeper reality, the mechanism of stratified reality, and the reality being independent of agency. Replacing these approaches, Critical Realism unfold the theoretical potential as an alternative paradigm for social welfare through the discussion on stratified realty(the empirical, the actual, and the real), intransitive/transitive dimension, double hermeneutics in these dimensions, and the conditions for conceptualization, duality of structure and practice, transformation model of agency and structure.

Feasibility study on an acceleration signal-based translational and rotational mode shape estimation approach utilizing the linear transformation matrix

  • Seung-Hun Sung;Gil-Yong Lee;In-Ho Kim
    • Smart Structures and Systems
    • /
    • v.32 no.1
    • /
    • pp.1-7
    • /
    • 2023
  • In modal analysis, the mode shape reflects the vibration characteristics of the structure, and thus it is widely performed for finite element model updating and structural health monitoring. Generally, the acceleration-based mode shape is suitable to express the characteristics of structures for the translational vibration; however, it is difficult to represent the rotational mode at boundary conditions. A tilt sensor and gyroscope capable of measuring rotational mode are used to analyze the overall behavior of the structure, but extracting its mode shape is the major challenge under the small vibration always. Herein, we conducted a feasibility study on a multi-mode shape estimating approach utilizing a single physical quantity signal. The basic concept of the proposed method is to receive multi-metric dynamic responses from two sensors and obtain mode shapes through bridge loading test with relatively large deformation. In addition, the linear transformation matrix for estimating two mode shapes is derived, and the mode shape based on the gyro sensor data is obtained by acceleration response using ambient vibration. Because the structure's behavior with respect to translational and rotational mode can be confirmed, the proposed method can obtain the total response of the structure considering boundary conditions. To verify the feasibility of the proposed method, we pre-measured dynamic data acquired from five accelerometers and five gyro sensors in a lab-scale test considering bridge structures, and obtained a linear transformation matrix for estimating the multi-mode shapes. In addition, the mode shapes for two physical quantities could be extracted by using only the acceleration data. Finally, the mode shapes estimated by the proposed method were compared with the mode shapes obtained from the two sensors. This study confirmed the applicability of the multi-mode shape estimation approach for accurate damage assessment using multi-dimensional mode shapes of bridge structures, and can be used to evaluate the behavior of structures under ambient vibration.

Utilization and Excavation Practices of Fire-Fighting Vulnerable Zone Model (소방취약지 모델의 활용 및 적용사례 발굴)

  • Choi, Gap Yong;Chang, Eun Mi;Kim, Seong Gon;Cho, Kwang-Hyun
    • Spatial Information Research
    • /
    • v.22 no.3
    • /
    • pp.79-87
    • /
    • 2014
  • In order to foster rapid disaster response and public life protection, National Emergency Management Agency has been trying to spread 'Emergency Rescue Standard System' on a national scale since 2006. The agency has also intensified management of firefighter's safety on disaster site by implementing danger predication training, specialized training and education and safety procedure check as a part of safety management officer duties. Nevertheless, there are limitations for effective fire fighting steps, such as damage spreading and life damage due to unawareness of illegal converted structure, structure transformation by high temperature and nearby hazardous material storage as well as extemporary situation handling endangered firefighter's life. In order to eliminate these limitations there is a need for an effort and technology application to minimize human errors such as inaccurate situational awareness, wrong decision built on experience and judgment of field commander and firefighters. The purpose of this study is to propose a new disaster response model which is applied with geospatial information. we executed spatial contextual awareness map analysis using fire-fighting vulnerable zone model to propose the new disaster response model and also examined a case study for Dalseo-gu in Daegu Metropolitan City. Finally, we also suggested operational concept of new proposed model on a national scale.

RF Collimator Design having Multi-Dielectric Structure using the Phase Field Design Method (페이즈필드 설계법을 이용한 다중 유전체 구조의 RF 콜리메이터 설계)

  • Go, Joohyun;Seong, Hong Kyoung;Kim, Hanmin;Park, Jinwoo;Yoo, Jeonghoon
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.31 no.1
    • /
    • pp.47-52
    • /
    • 2018
  • In this study, a collimator composed of multi-dielectric structures is designed using the phase field design method, a kind of topology optimization methods. It is also purposed to improve the mechanical-structural performance of a collimator by replacing previously used air regions with another dielectric material. Polypropylene and paraffin are selected as the dielectric materials for the design process taking manufacturability into account. The design objective is formulated by integrating the intensity of the electromagnetic field in the pre-determined target area to realize the collimating performance. The model for accurate numerical analysis was derived from the final result obtained from the design process through the simple cut-off method and it shows the improved performance of 105% compared with the free space wave propagation. For the designed model, the possibility of reverse transformation, the mechanical durability evaluation under the compression load, and the electromagnetic performance in the X-band range were also evaluated.