• 제목/요약/키워드: Transformation Heat

검색결과 583건 처리시간 0.037초

일반탄소강의 상변태 중 발열 특성 해석 (Characteristics of Heat Generation during Transormation in Carbon Steels)

  • 한흥남
    • 한국소성가공학회:학술대회논문집
    • /
    • 한국소성가공학회 2000년도 춘계학술대회논문집
    • /
    • pp.196-201
    • /
    • 2000
  • A thermodynamic model was developed to analyze the characteristics of the heat generation during transformation of austenite in 0.186wt% and 0.458 wt%. carbon steels. The heat capacity and the heat evolved during transformation were formulated as functions of temperature and chemical composition for ferrite bainite and pearlite. in addition using the transformation dilatometer the transformation heat evolved during cooling was measured and the transformation behavior was observed. It was found that the heat capacity of ferrite was similar to those of pearlite and bainite. The heat capacity of ferrite was greater than that of bainite which was greater than that of pearlite. The molar heat of transformation to pearlite was greater than that to bainite which was greater than that to ferrite. The heats were found to be increased with decreased temperature and increasing the carbon content, It was also observed that the thermodynamic model. The heat of transformation in the higher carbon steel was greater than that in the lower carbon one. This was attributed to the lower transformation temperature and the greater amount of transformed pearlite in the higher carbon steel.

  • PDF

탄소강 담금질시의 상변태열과 이를 포함한 냉각곡선의 계산 (The Latent Heat of Phase Transformation of the Carbon Steel and the Calculation of Cooling Curves Including the Latent Heat in Quenching)

  • 윤석훈;김경근
    • Journal of Advanced Marine Engineering and Technology
    • /
    • 제18권3호
    • /
    • pp.10-16
    • /
    • 1994
  • This study aimed at measuring the latent heat of phase transformation of S45C carbon steel in quenching and at conducting the analytical researches into the calculation of cooling curves including the latent heat. The temperature of phase transformation of steel and its latent heat are dependant upon the cooling rates at the temperature of A1 phase transformation point. The effect of the latent heat of phase transformation is especially manifest at the cooling curve of center of specimens. The higher the cooling rates became, the lower fell the temperature region of phase transformation. In the figures of cooling rates, the phenomena of cooling rate dropping into zero was caused by the latent heat of phase transformation.

  • PDF

고온강재의 담금질 전열에 관한 연구 (A Study on the Heat Transfer of the High Temperature Metals in Quenching - The Latent Heat of Phase Transformation and Cooling Curves -)

  • 윤석훈
    • 수산해양기술연구
    • /
    • 제27권4호
    • /
    • pp.321-327
    • /
    • 1991
  • Experiments of quenching were made with cylindrical specimens of carbon steel S45C of diameters from 12 to 30mm were performed. The specimens were heated by electric furnace and quenched by immersion method. In order to analyze the temperature profile(cooling curves) of carbon steel including the latent heat of phase transformation, nonlinear heat conduction problem was calculated by the numerical method of inverse heat conduction problem using the apparent heat capacity method. The difference between the calculated and the experimented cooling curves was caused by the latent heat of phase transformation, and the effects of the latent heat were especially manifest at the cooling curves of center of specimens. The temperature and the quantity of the latent heat of phase transformation depend on the cooling speed at A sub(1) transformation point, and the region for cooling speed to become zero was caused by the latent heat of phase transformation.

  • PDF

상변태를 고려한 베어링의 열처리 변형 해석 (Heat Treatment Deformation Analysis of Bearing Considering Phase Transformation)

  • 이승표;이석재;김태범;조균택
    • 열처리공학회지
    • /
    • 제36권6호
    • /
    • pp.351-358
    • /
    • 2023
  • Bearings are mechanical components that support loads and transmit rotation. The inner and outer rings come into contact with the rotating mechanism, requiring a very high level of hardness. To meet this requirement, heat treatment is commonly performed. The heat treatment process inherently involves thermal deformation. Particularly in the case of large bearings, significant deformation relative to the bearing's shape can occur, making accurate deformation prediction during heat treatment essential. However, predicting deformation in heat treatment is challenging due to the simultaneous consideration of phase transformation, heat transfer, and bearing deformation. In this study, an analysis of heat treatment-induced deformation in bearings was conducted, taking phase transformation into account. The thermal and mechanical properties were calculated based on the chemical composition of the bearing material. This information was then used to perform a deformation-heat transfer-phase transformation analysis. To validate the reliability of the analysis, experiments were conducted under the same conditions. When comparing the analysis and experimental results, differences in deformation were observed. These differences were attributed to variations in phase transformation conditions between the analysis and experiments. Consequently, it is anticipated that supplementing these results will enable the prediction of deformation while considering phase transformation conditions in bearings.

변태잠열을 고려한 담금과정의 열전도 해석 (Heat Distribution Analysis of an End-Quenching Process Considering Latent Heat of Transformation)

    • 한국생산제조학회지
    • /
    • 제7권3호
    • /
    • pp.79-84
    • /
    • 1998
  • It is very difficult to analyze the transient temperature distribution during quenching of the steel because of coupled effects among temperature, structures and stresses. In this paper, using Inoue's equation of evolution and mixture rule, transient temperature distribution is calculated by the finite element method considering latent heat of transformation structure and temperature dependence of physical and mechanical prperties for the 0.45% carbon cylindrical steel bar with 40mm diameter and 20mm height during end-quenching.

  • PDF

TRANSFORMATION OF DIMENSIONLESS HEAT DIFFUSION EQUATION FOR THE SOLUTION OF DYNAMIC DOMAIN IN PHASE CHANGE PROBLEMS

  • Ashraf, Muhammad;Avila, R.;Raza, S. S.
    • Journal of the Korean Society for Industrial and Applied Mathematics
    • /
    • 제13권1호
    • /
    • pp.31-40
    • /
    • 2009
  • In the present work transformation of dimensionless heat diffusion equation for the solution of moving boundary problems have been formulated. The formulation is based on 1-D, 2-D and 3-D, unsteady heat diffusion equations. These equations are rst turned int dimensionless form by using dimensionless quantities and their transformation was formulated in liquid and solid phases. The salient feature of this work is that during the transformation of dimensionless heat diffusion equation there arises a convective term $\tilde{v}$ which is responsible for the motion of interface in liquid as well as solid phase. In the transformed heat equation, a correction factor $\beta$ also arises naturally which gives the correct transformed flux at interface.

  • PDF

유한요소법을 이용한 용접부의 열전달 및 잔류응력 해석에 관한 연구 (A Study on Analysis of Heat Transfer and Residual Stress on the Weld Zone using FEM)

  • 김일수
    • 한국생산제조학회지
    • /
    • 제9권5호
    • /
    • pp.96-104
    • /
    • 2000
  • This paper represents to develop a computer software system which is capable to analyze the phase transformation of high strength steel(BV-AH32) and to predict heat transfer and welding residual stress due to phase transformation during Gas Metal Arc(GMA) welding. The developed model was considered temperature dependent properties such as young's modules, coefficient of thermal expansion and yield stress as well as the double ellipsoidal heat distribution by the moving arc. From the results, it was found that the longitudinal and transverse residual stresses calculated by the coupled analysis of heat transfer, residual stress and phase transformation showed good agreement with the experimental data. In addition, the temperature distribution as well as longitudinal and transverse residual stresses of weldment by the 1-pass and 2-pass of welding were also determined.

  • PDF

Escherichia coli의 pBR322 DNA 형질전환에 관여하는 인자에 관한 연구 (Studies on the Factors Influencing the Transformation in Escherichia with pBR322 DNA)

  • 유한상;마점술
    • 대한수의학회지
    • /
    • 제24권1호
    • /
    • pp.40-49
    • /
    • 1984
  • To investigate the factors influencing the artifical transformation in Escherichia coli, E. coli C600 was transformed by pBR322 DNA with tetracycline and ampicillin resistant gene purified by CsCl-Etbr equilibrium density gradient centrifugation from E.coli HB 101. The influencing factors in the transformation such as concentration of calcium chloride, time of ice incubation, temperature and time of heat shock, time of gene expression, effects of plasmid DNA concentration and adding time were examined in these experiments. The results obtained were as follows; 1. The highest transformation frequency was observed in the treatments of 100 mM $CaCl_2$ before heat shock and the treatment of $CaCl_2$ was essential step in the process of E. coli transformation. 2. The highest transformation frequency was observed in the treatment of heat shock at $42^{\circ}C$ for 4 min. or $37^{\circ}C$ for 6 min., but the prolonged heat shock resulted a decreased transformation frequency. 3. Treatments of ice incubation at $0^{\circ}C$ for 45 min. before heat stocks or at $0^{\circ}C$ for 30min. after heat shock resulted an increased transformation frequency. 4. There was a linear relationship between DNA concentration and transformation frequency at the concentration of $8{\times}10^3$ recipient cells. The highest transformation frequency reached in carte of 7 mcg of donor DNA, but above 1 mcg of DNA concentration, transformation frequency was not remarkably increased. Addition of donor DNA just after the treatment of $CaCl_2$ was the best. 5. The best condition of gene expression at $37^{\circ}C$ were 40min. for TC-resistant gene and 100min. for AP-resistant gene. TC-resistant gene was higher in the transformation frequency and faster in the gene expression time than AP-resistant gene. In these results, the best conditions for the transformation of E. coli C 600 with pBR322 DNA were: treatment with 100mM $CaCl_2$, ice incubation at $0^{\circ}C$ for 45 min, heat shock at $42^{\circ}C$ for 4 min., 30 min. of ice incubation and incubation at $37^{\circ}C$ for 100min. for gene expression in that order.

  • PDF

$\alpha$-질화규소 Whisker의 $\alpha$/$\beta$ 상변태 ($\alpha$ to $\beta$ Phase Transformation of $\alpha$-Si3N4 Whisker)

  • 박지연;김종희
    • 한국세라믹학회지
    • /
    • 제25권5호
    • /
    • pp.502-508
    • /
    • 1988
  • The $\alpha$ to $\beta$ phase transformation of $\alpha$-Si3N4 whisker and related microstructural changes have been investigated. When only $\alpha$-Si3N4 whisker was heat treated in the range 1650~175$0^{\circ}C$, the $\alpha$ to $\beta$ phase transformation occured. In this case, it eas suggested that the oxygen content in $\alpha$-Si3N4 whisker affected the transformation behavior. Although $\alpha$-Si3N4 whisker with Si was heat treated under the same condition, however, the variation of $\beta$- fraction had a similar tendency with heat treating time. Therfore, it was considered that the oxygen content in $\alpha$-Si3N4 whisker affected the transformation behavior dominently rather than the content of added Si. The added $\beta$ phase did not affect the transformation behaviro of $\alpha$-Si3N4 whisker.

  • PDF

잔류응력 완화에 미치는 상변태의 수치적 모델링 (N.M.for the Effect of P.T. on Resicual Stress Relaxation)

  • 장경복;손금렬;강성수
    • Journal of Welding and Joining
    • /
    • 제17권6호
    • /
    • pp.84-89
    • /
    • 1999
  • Most of ferrous b.c.c weld materials may experience martensitic transformation during rapid cooling after welding. It is well known that volume expansion due to the phase transformation could influence on the relaxation of welding residual stress. To apply this effect practically, it is a prerequisite to establish a numerical model which is able to estimate the effect of phase transformation on residual stress relaxation quantitatively. For this purpose, the analysis is carried out in two regions. i.e., heating and cooling, because the variation of material properties following a phase transformation in cooling is different in comparison with the case in heating, even at the same temperature. The variation of material properties following phase transformation is considered by the adjustment of specific heat and thermal expansion coefficient, and the distribution of residual stress in analysis is compared with that of experiment by previous study. consequently, in this study, simplified numerical procedures considering phase transformation, which based on a commercial finite element package was established through comparing with the experimental data of residual stress distribution by other researcher. To consider the phase transformation effect on residual stress relaxation, the transition of mechanical and thermal property such as thermal expansion coefficient and specific heat capacity was found by try and error method in this analysis.

  • PDF