• Title/Summary/Keyword: Transform parameters.

Search Result 634, Processing Time 0.023 seconds

Tunable Q-factor 2-D Discrete Wavelet Transformation Filter Design And Performance Analysis (Q인자 조절 가능 2차원 이산 웨이브렛 변환 필터의 설계와 성능분석)

  • Shin, Jonghong
    • Journal of Korea Society of Digital Industry and Information Management
    • /
    • v.11 no.1
    • /
    • pp.171-182
    • /
    • 2015
  • The general wavelet transform has profitable property in non-stationary signal analysis specially. The tunable Q-factor wavelet transform is a fully-discrete wavelet transform for which the Q-factor Q and the asymptotic redundancy r, of the transform are easily and independently specified. In particular, the specified parameters Q and r can be real-valued. Therefore, by tuning Q, the oscillatory behavior of the wavelet can be chosen to match the oscillatory behavior of the signal of interest, so as to enhance the sparsity of a sparse signal representation. The TQWT is well suited to fast algorithms for sparsity-based inverse problems because it is a Parseval frame, easily invertible, and can be efficiently implemented. The transform is based on a real valued scaling factor and is implemented using a perfect reconstruction over-sampled filter bank with real-valued sampling factors. The transform is parameterized by its Q-factor and its over-sampling rate, with modest over-sampling rates being sufficient for the analysis/synthesis functions to be well localized. This paper describes filter design of 2D discrete-time wavelet transform for which the Q-factor is easily specified. With the advantage of this transform, perfect reconstruction filter design and implementation for performance improvement are focused in this paper. Hence, the 2D transform can be tuned according to the oscillatory behavior of the image signal to which it is applied. Therefore, application for performance improvement in multimedia communication field was evaluated.

Digital Image Processing Using Tunable Q-factor Discrete Wavelet Transformation (Q 인자의 조절이 가능한 이산 웨이브렛 변환을 이용한 디지털 영상처리)

  • Shin, Jong Hong
    • Journal of Korea Society of Digital Industry and Information Management
    • /
    • v.10 no.3
    • /
    • pp.237-247
    • /
    • 2014
  • This paper describes a 2D discrete-time wavelet transform for which the Q-factor is easily specified. Hence, the transform can be tuned according to the oscillatory behavior of the image signal to which it is applied. The tunable Q-factor wavelet transform (TQWT) is a fully-discrete wavelet transform for which the Q-factor, Q, of the underlying wavelet and the asymptotic redundancy (over-sampling rate), r, of the transform are easily and independently specified. In particular, the specified parameters Q and r can be real-valued. Therefore, by tuning Q, the oscillatory behavior of the wavelet can be chosen to match the oscillatory behavior of the signal of interest, so as to enhance the sparsity of a sparse signal representation. The TQWT is well suited to fast algorithms for sparsity-based inverse problems because it is a Parseval frame, easily invertible, and can be efficiently implemented. The TQWT can also be used as an easily-invertible discrete approximation of the continuous wavelet transform. The transform is based on a real valued scaling factor (dilation-factor) and is implemented using a perfect reconstruction over-sampled filter bank with real-valued sampling factors. The transform is parameterized by its Q-factor and its oversampling rate (redundancy), with modest oversampling rates (e. g. 3-4 times overcomplete) being sufficient for the analysis/synthesis functions to be well localized. Therefore, This method services good performance in image processing fields.

A Study on Diagnosis of Transformers Aging Sate Using Wavelet Transform and Neural Network (이산웨이블렛 변환과 신경망을 이용한 변압기 열화상태 진단에 관한 연구)

  • 박재준;송영철;전병훈
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.14 no.1
    • /
    • pp.84-92
    • /
    • 2001
  • In this papers, we proposed the new method in order to diagnosis aging state of transformers. For wavelet transform, Daubechies filter is used, we can obtain wavelet coefficients which is used to extract feature of statistical parameters (maximum value, average value, dispersion skewness, kurtosis) about each acoustic emission signal. Also, these coefficients are used to identify normal and fault signal of internal partial discharge in transformer. As improved method for classification use neural network. Extracted statistical parameters are input into an back-propagation neural network. The number of neurons of hidden layer are obtained through Result of Cross-Validation. The network, after training, can decide whether the test signal is early aging state, alst aging state or normal state. In quantity analysis, capability of proposed method is superior to compared that of classical method.

  • PDF

Recognition of Feature Points in ECG and Human Pulse using Wavelet Transform (웨이브렛 변환을 이용한 심전도와 맥파의 특징점 인식)

  • Kil Se-Kee;Shen Dong-Fan;Lee Eung-Hyuk;Min Hong-Ki;Hong Seung-Hong
    • The Transactions of the Korean Institute of Electrical Engineers D
    • /
    • v.55 no.2
    • /
    • pp.75-81
    • /
    • 2006
  • The purpose of this paper is to recognize the feature points of ECG and human pulse -which signal shows the electric and physical characteristics of heart respectively- using wavelet transform. Wavelet transform is proper method to analyze a signal in time-frequency domain. In the process of wavelet decomposition and reconstruction of ECG and human pulse signal, we removed the noises of signal and recognized the feature points of signal using some of decomposed component of signal. We obtained the result of recognition rate that is estimated about 95.45$\%$ in case of QRS complex, 98.08$\%$ in case of S point and P point and 92.81$\%$ in case of C point. And we computed diagnosis parameters such as RRI, U-time and E-time.

Detection of Ellipses using Least Square Method (최소자승법을 이용한 타원의 검출)

  • 이주용;서요한;이웅기
    • Journal of the Korea Society of Computer and Information
    • /
    • v.1 no.1
    • /
    • pp.95-104
    • /
    • 1996
  • The Hough transform Is a robust technique Which Is useful in defecting straight lines in an picture. However, the extension of the conventional Hough transform to recover circles and ellipses has been limited by slow speed and excessive memory .This paper presents a method of detecting ellipses from the Image by using Least Square Method. This method Is reduced calculation cost and memory requirement .When detecting ellipse. Instead of obtaining accumulation of Hough transform for determination of ellipse parameters. particular points containing geometric properties of ellipse are selected. Parameters of the ellipse are calculated by Least Square Method using those particular points.

  • PDF

Control Limits of Time Series Data using Hilbert-Huang Transform : Dealing with Nested Periods (힐버트-황 변환을 이용한 시계열 데이터 관리한계 : 중첩주기의 사례)

  • Suh, Jung-Yul;Lee, Sae Jae
    • Journal of Korean Society of Industrial and Systems Engineering
    • /
    • v.37 no.4
    • /
    • pp.35-41
    • /
    • 2014
  • Real-life time series characteristic data has significant amount of non-stationary components, especially periodic components in nature. Extracting such components has required many ad-hoc techniques with external parameters set by users in a case-by-case manner. In this study, we used Empirical Mode Decomposition Method from Hilbert-Huang Transform to extract them in a systematic manner with least number of ad-hoc parameters set by users. After the periodic components are removed, the remaining time-series data can be analyzed with traditional methods such as ARIMA model. Then we suggest a different way of setting control chart limits for characteristic data with periodic components in addition to ARIMA components.

Structural damage detection based on changes of wavelet transform coefficients of correlation functions

  • Sadeghian, Mohsen;Esfandiari, Akbar;Fadavie Manochehr
    • Structural Monitoring and Maintenance
    • /
    • v.9 no.2
    • /
    • pp.157-177
    • /
    • 2022
  • In this paper, an innovative finite element updating method is presented based on the variation wavelet transform coefficients of Auto/cross-correlations function (WTCF). The Quasi-linear sensitivity of the wavelet coefficients of the WTCF concerning the structural parameters is evaluated based on incomplete measured structural responses. The proposed algorithm is used to estimate the structural parameters of truss and plate models. By the solution of the sensitivity equation through the least-squares method, the finite element model of the structure is updated for estimation of the location and severity of structural damages simultaneously. Several damage scenarios have been considered for the studied structure. The parameter estimation results prove the high accuracy of the method considering measurement and mass modeling errors.

2-D object recognition using distance transform on morphological skeleton (형태학적 골격에서의 거리 변환을 이용한 2차원 물체 인식)

  • 권준식;최종수
    • Journal of the Korean Institute of Telematics and Electronics B
    • /
    • v.33B no.7
    • /
    • pp.138-146
    • /
    • 1996
  • In this paper, w epropose a new mehtod to represent the shape and to recognize the object. The shape description and the matching is implemented by using the distance transform on the morphological skeleton. The employed distance transform is the chamfer (3,4) distance transform, because the chamfer distance transform (CDT) has an approximate value to the euclidean distance. The 2-D object can be represented by means of the distribution of the distance transform on the morphological skeleton, the number of skeletons, the sum of the CDT, and the other features are employed as the mtching parameters. The matching method has the invariant features (rotation, translation, and scaling), and then the method is used effectively for recognizing the differently-posed objects and/or marks of the different shape and size.

  • PDF

Optimal Parameter Selection in Edge Strength Hough Transform (경계선 강도 허프 변환에서 최적 파라미터의 결정)

  • Heo, Gyeong-Yong;Woo, Young-Woon;Kim, Kwang-Baek
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.17 no.5
    • /
    • pp.575-581
    • /
    • 2007
  • Though the Hough transform is a well-known method for detecting analytical shape represented by a number of free parameters, the basic property of the Hough transform, the one-to-many mapping from an image space to a Hough space, causes the innate problem, the sensitivity to noise. To remedy this problem, Edge Strength Hough Transform (ESHT) was proposed and proved to reduce the noise sensitivity. However the performance of ESHT depends on the size of a Hough space and image and some other parameters which should be decided experimentally. In this paper, we derived formulae to decide 2 parameter values; decreasing parameter and broadening parameter, which play an important role in ESHT. Using the derived formulae, 2 parameter values can be decided only with the pre-determined values, the size of a Hough space and an image, which make it possible to decide them automatically. The experiments with different parameter values also support the result.

I.A New Family of Orthogonl Transforms: Derivation based on the Parametric Sinusoidal Matrix (I. 새로운 직교 변환군 : 매개변수형 삼각함수 행렬에 의한 유도)

  • Park, Tae-Young
    • Journal of the Korean Institute of Telematics and Electronics
    • /
    • v.24 no.1
    • /
    • pp.159-166
    • /
    • 1987
  • A new family of sinusoidal orthogoal trnasform is introduced. For a derivation, a parametric sinusoidal matrix whose transform might be implemented by a suitable FFT algorithm is modeled basically on the analogy of well-known sinusoidal transform such as DCT,SCT, etc., and its orthogonality condition is calculated. The parameters satisfying orthogonality condition are determined, in a sense, by particular solution after trial and error. However more than then transform matrices not yet known are obtained. It is also shown that these transforms can be computed by a DFT. of an image.

  • PDF