• Title/Summary/Keyword: Transform Domain Analysis

Search Result 329, Processing Time 0.032 seconds

Impedance and Mutual Coupling Characteristics of a Probe-Fed Stacked Circular Microstrip Two-Element Array Antenna (Probe로 급전되는 적층형 원형 마이크로스트립 2소자 배열 안테나의 임피던스 및 상호 결합 특성)

  • 이면주;남상욱
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.18 no.11
    • /
    • pp.1767-1773
    • /
    • 1993
  • In this paper, the coupling characteristics as well as the self and the mutual Impedance of a two-element probe-fed stacked circular microstrip array antennas are presented. A full wave analysis for the structure is performed In the spectral domain using the vector Hankel transform(VHT). Also, we presented measured results for the impedance, the coupling characteristics of the antenna and the variation of the coupling with the distance between the two elements. Finally, the calculated and measured results are shown to agree well wlth each other through comparisons.

  • PDF

Evaluation of flutter derivatives for time domain analysis with optimization (시간 영역 해석을 위한 플러터 계수의 최적화 결정법)

  • Jung, Kil-Je;Lee, Hae-Sung;Kim, Ho-Kyung
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 2011.04a
    • /
    • pp.88-89
    • /
    • 2011
  • 풍하중이 작용하는 교량의 응답을 구하기 위하여 RFA(Rational Function Approximation)와 같은 시간 영역해석법이 널리 사용되고 있다. 교량 단면의 공기역학적 특성을 정의하는 플러터 계수는 주파수 영역에서 정의되기 때문에, 시간 영역해석을 위하여 inverse Fourier transform을 통해 얻어진 impulse response function을 이용한 중첩 적분법이 제안되었다. 시간 영역해석을 위해서는 플러터 계수에 상관성이 존재해야 함을 밝히고, 최적화 방법을 이용하여 시간 영역 해석을 위한 플러터 계수 산정법을 제안하고자 한다. B/D=20의 구형 단면에 적용하여 제안한 방법의 타당성을 검증하고자 한다.

  • PDF

Alternative Method of AWG Phase Measurement Based on Fitting Interference Intensity

  • Oh, Yong Ho;Lim, Sungwoo;Go, Chun Soo
    • Journal of the Optical Society of Korea
    • /
    • v.16 no.2
    • /
    • pp.91-94
    • /
    • 2012
  • Arrayed waveguide grating (AWG) phase errors are normally assessed from the Fourier transform of the interference intensity data in the frequency domain method. However it is possible to identify the phases directly from the intensity data if one adopts a trial-and-error method. Since the functional form of the intensity profile is known, the intensities can be calculated theoretically by assuming arbitrary phase errors. Then we decide the phases that give the best fit to the experimental data. We verified this method by a simulation. We calculated the intensities for an artificial AWG which is given arbitrary phases and amplitudes. Then we extracted the phases and amplitudes from the intensity data by using our trial-and-error method. The extracted values are in good agreement with the originally given values. This approach yields better results than the analysis using Fourier transforms.

Analysis of Resultant Harmonic Field Density in Air Gap for Ratio Teeth Pitch vs Slot Width (치절(teeth pitch)과 슬롯폭의 비에 의한 공극의 합성고조파밀도해석)

  • Lee, Eun-Woong;Cho, Hyun-Gil;Kim, Jong-Gyeum;Lim, Jae-Il;Kim, Sung-Hyun
    • Proceedings of the KIEE Conference
    • /
    • 1995.07a
    • /
    • pp.171-173
    • /
    • 1995
  • Slot field harmonics exist in air gap due to inevitable slot constructure of induction motors. They give rise to noise by the electromagnetic vibration and mechanical pulsation. We calculate the slot field harmonics for varying the ratio of slot width vs teeth pitch using the carter's coefficent. We computate the flux density in air gap by FEM(Finite Element Method) and analyze it in frequency domain using DFT(Discrete Fourier Transform). We develop the new algorithm mixing FEM with DFT.

  • PDF

Axisymmetric thermomechanical analysis of transversely isotropic magneto thermoelastic solid due to time-harmonic sources

  • Lata, Parveen;Kaur, Iqbal
    • Coupled systems mechanics
    • /
    • v.8 no.5
    • /
    • pp.415-437
    • /
    • 2019
  • The present research deals with two-dimensional axisymmetric deformation in transversely isotropic magneto thermoelastic solid with and without energy dissipation, with two temperature and time-harmonic source. The proposed model is helpful for finding the type of relations between mechanical and thermal fields as most of the structural elements of heavy industries are frequently related to mechanical and thermal stresses at a higher temperature. The Hankel transform has been used to find a solution to the problem. The displacement components, stress components, and temperature distribution with the horizontal distance in the physical domain are calculated numerically. The effect of time-harmonic source and two temperature is depicted graphically on the resulting quantities.

A New Interpretation of the Compass Gradient Edge Operators (Compass Gradient Edge 연산자의 새로운 해석방법)

  • Park, Rae-Hong;Choi, Woo Young
    • Journal of the Korean Institute of Telematics and Electronics
    • /
    • v.24 no.1
    • /
    • pp.97-101
    • /
    • 1987
  • The edge, a discontinuity or abrupt change in the gray-level or color, is a fundamentally important primitive feature of an image necessary for the image analysis and classification. Two-dimensional 3x3 compass gradient operators (ex. Sobel, Prewitt, and Kirsch operators)are commonly used in the edge detection and usually detect 8 compass directional components. In this paper, we present a new interpretation of the relationships between the resulting 8 gradient magnitudes and the 8 intensity values of neighboring pixels which are covered by the two-dimensional 3x3 mask. It is expected that a new gradient edge operator may be designed by changing the eigenvalues in the transform domain and the fast optical edge operator may be implemented by using the optical system.

  • PDF

Evaluation of dynamic properties of extra light weight concrete sandwich beams reinforced with CFRP

  • Naghipour, M.;Mehrzadi, M.
    • Steel and Composite Structures
    • /
    • v.7 no.6
    • /
    • pp.457-468
    • /
    • 2007
  • Analytical and experimental investigation on dynamic properties of extra lightweight concrete sandwich beams reinforced with various lay ups of carbon reinforced epoxy polymer composites (CFRP) are discussed. The lightweight concrete used in the core of the sandwich beams was made up of extra lightweight aggregate, Lica. The density of concrete was half of that of the ordinary concrete and its compressive strength was about $100Kg/cm^2$. Two extra lightweight unreinforced (control) beams and six extra lightweight sandwich beams with various lay ups of CFRP were clamped in one end and tested under an impact load. The dimension of the beams without considering any reinforcement was 20 cm ${\times}$ 10 cm ${\times}$ 1.4 m. These were selected to ensure that the effect of shear during the bending test would be minimized. Three other beams, made up of ordinary concrete reinforced with steel bars, were tested in the same conditions. For measuring the damping capacity of sandwich beams three methods, Logarithmic Decrement Analysis (LDA), Hilbert Transform Analysis (HTA) and Moving Block Analysis (MBA) were applied. The first two methods are in time domain and the last one is in frequency domain. A comparison between the damping capacity of the beams obtained from all three methods, shows that the damping capacity of the extra lightweight concrete decreases by adding the composite reinforced layers to the upper and lower sides of the beams, and becomes most similar to the damping of the ordinary beams. Also the results show that the stiffness of the extra lightweight concrete beams increases by adding the composite reinforced layer to their both sides and become similar to the ordinary beams.

Numerical analysis of unsteady hydrodynamic performance of pump-jet propulsor in oblique flow

  • Qiu, Chengcheng;Pan, Guang;Huang, Qiaogao;Shi, Yao
    • International Journal of Naval Architecture and Ocean Engineering
    • /
    • v.12 no.1
    • /
    • pp.102-115
    • /
    • 2020
  • In this study, the SST k - ω turbulence model and the sliding mesh technology based on RANS method have been adopted to simulate the exciting force and hydrodynamic of a pump-jet propulsor in different oblique inflow angle (0°, 10°, 20°, 30°) and different advance ratio (J = 0.95, J = 1.18, J = 1.58).The fully structured grid and full channel model have been adopted to improved computational accuracy. The classical skewed marine propeller E779A with different advance ratio was carried out to verify the accuracy of the numerical simulation method. The grid independence was verified. The time-domain data of pump-jet propulsor exciting force including bearing force and fluctuating pressure in different working conditions was monitored, and then which was converted to frequency domain data by fast Fourier transform (FFT). The variation laws of bearing force and fluctuating pressure in different advance ratio and different oblique flow angle has been presented. The influence of the peak of pulsation pressure in different oblique flow angle and different advance ratio has been presented. The results show that the exciting force increases with the increase of the advance ratio, the closer which is to the rotor domain and the closer to the blades tip, the greater the variation of the pulsating pressure. At the same time, the exciting force decrease with the oblique flow angle increases. And the vertical and transverse forces will change more obviously, which is the main cause of the exciting force. In addition, the pressure distribution and the velocity distribution of rotor blades tip in different oblique flow angles has been investigated.

A Simplified Numerical Method for Simulating the Generation of Linear Waves by a Moving Bottom (바닥의 움직임에 따른 선형파의 생성을 모의할 수 있는 간편 수치해석 기법)

  • Jae-Sang Jung
    • Journal of Korean Society of Coastal and Ocean Engineers
    • /
    • v.35 no.2
    • /
    • pp.41-48
    • /
    • 2023
  • In this study, simplified linear numerical method that can simulate wave generation and transformation by a moving bottom is introduced. Numerical analysis is conducted in wave number domain after continuity equation, linear dynamic and kinematic free surface boundary conditions and linear kinematic bottom boundary condition are Fourier transformed, and the results are expressed in space domain by an inverse Fourier transform. In the wavenumber domain, the dynamic free water surface boundary condition and the kinematic free water surface boundary condition are numerically calculated, and the velocity potential in the mean water level (z = 0) satisfies the continuity equation and the kinematic bottom boundary condition. Wave generation and transformation are investigated when the triangular and rectangular shape of bottoms move periodically. The results of the simplified numerical method are compared with the results of previous analytical solutions and agree well with them. Stability of numerical results according to the calculation time interval (Δt) and the calculation wave number interval (Δk) was also investigated. It was found that the numerical results were appropriate when Δt ≤ T(period)/1000 and Δk ≤ π/100.

Analytic Error Caused by the Inconsistency of the Approximation Order between the Non Local Boundary Condition and the Parabolic Governing Equation (포물선 지배 방정식과 비국소적 경계조건의 근사 차수 불일치에 의한 해석적 오차)

  • Lee Keun-Hwa;Seong Woo-Jae
    • The Journal of the Acoustical Society of Korea
    • /
    • v.25 no.5
    • /
    • pp.229-238
    • /
    • 2006
  • This paper shows the analytic error caused by the inconsistency of the approximation order between the non local boundary condition (NLBC) and the parabolic governing equation. To obtain the analytic error, we first transform the NLBC to the half space domain using plane wave analysis. Then, the analytic error is derived on the boundary between the true numerical domain and the half space domain equivalent to the NLBC. The derived analytic error is physically expressed as the artificial reflection. We examine the characteristic of the analytic error for the grazing angle, the approximation order of the PE or the NLBC. Our main contribution is to present the analytic method of error estimation and the application limit for the high order parabolic equation and the NLBC.