• Title/Summary/Keyword: Transferred energy

Search Result 430, Processing Time 0.034 seconds

A Study on the I-V and I-P Characteristics for Optimized Operation of PEMFC (고분자 전해질형 연료전지의 최적운전을 위한 전압-전류, 전류-전력 특성 연구)

  • Jung, You-Ra;Choi, Young-Sung;Lee, Kyung-Sup
    • The Transactions of the Korean Institute of Electrical Engineers P
    • /
    • v.59 no.1
    • /
    • pp.112-116
    • /
    • 2010
  • Fuel cell as a renewable energy source is clean and has a lot of advantages. The source can solve energy crisis and environmental problems such as greenhouse effect, air pollution and the ozone layer destruction. This paper introduces hybrid system(hydro-Genius Professional, heliocentris) of solar cell and fuel cell. Also, this paper shows the I-P, V-I characteristics of fuel cells which are connected in parallel and series. From these results, we also found the maximum power was transferred at 0.5[${\Omega}$]. The terminal voltage was also decreased according to the current because of the internal resistance. The power transfer in series was two times than that in parallel.

A study on the Secondary Side Control DC-DC Converter in Wireless Power Transfer System (무선전력전송 시스템에서 2차측 DC-DC 컨버터에 관한 연구)

  • Seo, Sang-Hwa;Kim, Yong;Bae, Jin-Yong;Yun, Hong-Min;Lee, Sung-Ho;Cho, Young-il;Park, Seung-Ha
    • Proceedings of the KIEE Conference
    • /
    • 2015.07a
    • /
    • pp.1006-1007
    • /
    • 2015
  • Recent improvement in semiconductor technology make efficient switching possible at higher frequencies, which benefits the application of wireless inductive energy transfer. However, a higher frequency does not alter the magnetic coupling between energy transmitter and receiver. Due to the still weak magnetic coupling between transmitting and receiving sides that are separated by a substantial air gap, energy circulates in the primary transmitting side without being transferred to the secondary receiving side. This paper proposes an analysis on the system efficiency to determine the optimal impedance requirement for coils, rectifier and DC-DC Converter. A novel Boost DC-DC Converter is designed to provide the optimal impedance matching in WPT(Wireless Power Transfer) system for various loads.

  • PDF

Temperature Uniformity of the Glass Panel Heated in the Infrared Heating Chamber

  • Lee, Kong-Hoon;Kim, Ook-Joong
    • Journal of Mechanical Science and Technology
    • /
    • v.19 no.10
    • /
    • pp.1950-1956
    • /
    • 2005
  • An analysis has been carried out to investigate the effect of the reflectivity on the temperature distribution of a glass panel by infrared radiant heating. Halogen lamps are used to heat the panel, located near the top and bottom of the rectangular chamber. The thermal energy is transferred from the lamps to the panel only by radiation and it is considered by using view factor. The conductive transfer is limited inside the panel. The results show that the uniformity of the temperature distribution of the panel is improved and, at the same time, the time for heating increases as the wall reflectivity increases. The temperature difference between the center and the corner reaches a maximum in the early stage of the heating process and then decreases until it reaches a uniform steady-state value.

A Study on the Relay-Based Wireless Power Transmission Scheme in Energy Harvesting (에너지 하베스팅에서 무선 릴레이 전력 전송 방식 연구)

  • Baek, Seung-min;Jeon, Min-ho;Oh, Chang-heon
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2013.05a
    • /
    • pp.925-928
    • /
    • 2013
  • In this paper, we propose a relay-based wireless power transmission scheme in order to solve the problems of an existing wired power transmission for energy harvesting system. The proposed scheme can be transferred electromagnetic induction-based wireless power transmission by placing a 4-way coils in the energy block. We confirm the reliability of the electricity transmission through the relay control algorithm. Consequently, the proposed scheme can extend the transmit receive paths of transmission power.

  • PDF

Modeling and Experimental Study of Radio-frequency Glow Discharges and Applications for Plasma Processing

  • Kang, Nam-Jun
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2012.02a
    • /
    • pp.179-179
    • /
    • 2012
  • Low pressure radio-frequency glow discharges are investigated using theoretical modeling and various experimental diagnostic methods. In the calculations, global models and transformer models are developed to understand the chemical kinetics as well as the electrical properties such as the effective collision frequency, the heating mechanism and the power transferred to the plasma electrons. In addition, Boltzmann equation solver is used to compensate the effect of the electron energy distribution function (EEDF) shape in the global model, and the general expression of energy balance for non-Maxwellian electrons is developed. In the experiments, a number of traditional plasma diagnostic methods are used to compare with calculated results such as Langmuir probe, optical emission spectroscopy (OES), optical absorption spectroscopy (OAS) and two-photon absorption laser-induced fluorescence (TALIF). These theoretical and experimental methods are applied to understand several interesting phenomena in low pressure ICP discharges. The chemical and physical properties of low pressure ICP discharges are described and the applications of these methods are discussed.

  • PDF

COSMIC RAY ACCELERATION AT BLAST WAVES FROM TYPE Ia SUPERNOVAE

  • Kang, Hye-Sung
    • Journal of The Korean Astronomical Society
    • /
    • v.39 no.4
    • /
    • pp.95-105
    • /
    • 2006
  • We have calculated the cosmic ray(CR) acceleration at young remnants from Type Ia supernovae expanding into a uniform interstellar medium(ISM). Adopting quasi-parallel magnetic fields, gasdynamic equations and the diffusion convection equation for the particle distribution function are solved in a comoving spherical grid which expands with the shock. Bohm-type diffusion due to self-excited $Alfv\acute{e}n$ waves, drift and dissipation of these waves in the precursor and thermal leakage injection were included. With magnetic fields amplified by the CR streaming instability, the particle energy can reach up to $10^{16}Z$ eV at young supernova remnants(SNRs) of several thousand years old. The fraction of the explosion energy transferred to the CR component asymptotes to 40-50 % by that time. For a typical SNR in a warm ISM, the accelerated CR energy spectrum should exhibit a concave curvature with the power-law slope flattening from 2 to 1.6 at $E{\gtrsim}0.1$ TeV.

Crystallization behavior of ITO thin films sputtered on substrates with and without heating (가열기판 및 비가열 기판에 증착한 ITO 박막의 결정화 거동)

  • Park, Ju-O;Lee, Joon-Hyung;Kim, Jeong-Joo;Cho, Sang-Hee
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2003.08a
    • /
    • pp.89-92
    • /
    • 2003
  • ITO thin films were deposited by RF-magnetron sputtering method and crystallization behavior of the films with and without external heating as a function of deposition time was examined. X-ray diffraction results indicated an amorphous state of the film when the deposition time is short about 10 min. When the deposition time was increased over 20 min development of crystallization of the films is observed. Because RF-sputtering transfers the high-energy to the growing film by energetic bombardment, it is believed that considerable activation energy for the crystallization of the film has transferred during deposition, which resulted in the crystallization of ITO thin films without external energy supply.

  • PDF

Showerhead Surface Temperature Monitoring Method of PE-CVD Equipment (PE-CVD 장비의 샤워헤드 표면 온도 모니터링 방법)

  • Wang, Hyun-Chul;Seo, Hwa-Il
    • Journal of the Semiconductor & Display Technology
    • /
    • v.19 no.2
    • /
    • pp.16-21
    • /
    • 2020
  • How accurately reproducible energy is delivered to the wafer in the process of making thin films using PE-CVD (Plasma enhanced chemical vapor deposition) during the semiconductor process. This is the most important technique, and most of the reaction on the wafer surface is made by thermal energy. In this study, we studied the method of monitoring the change of thermal energy transferred to the wafer surface by monitoring the temperature change according to the change of the thin film formed on the showerhead facing the wafer. Through this research, we could confirm the monitoring of wafer thin-film which is changed due to abnormal operation and accumulation of equipment, and we can expect improvement of semiconductor quality and yield through process reproducibility and equipment status by real-time monitoring of problem of deposition process equipment performance.

High Efficiency Lossless Snubber for Photovoltaic Maximum Power Point Tracker (태양광 최대 전력 추종기를 위한 고효율 무손실 스너버)

  • Jang, Du-Hee;Kang, Jeong-Il;Han, Sang-Kyoo
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.18 no.5
    • /
    • pp.485-491
    • /
    • 2013
  • A new passive lossless snubber for boost converter based on magnetic coupling is proposed. It is composed of a winding coupled with boost inductor, one snubber inductor, two snubber capacitor and three additional diodes. Especially, the snubber inductor can not only limit the reverse recovery current of output diode but also minimize switch turn-on losses greatly. Moreover, all of the energy stored in the snubber is transferred to the load in the manner of resonance. To confirm the validity of proposed system, theoretical analysis, design consideration, and verification of experimental results are presented.

A new lossless snubber for DC-DC converters with energy transfer capability

  • Esfahani, Shabnam Nasr;Delshad, Majid;Tavakoli, Mohhamad Bagher
    • Smart Structures and Systems
    • /
    • v.25 no.3
    • /
    • pp.385-391
    • /
    • 2020
  • In this paper, a new passive lossless snubber circuit with energy transfer capability is proposed. The proposed lossless snubber circuit provides Zero-Current Switching (ZCS) condition for turn-on instants and Zero-Voltage Switching (ZVS) condition for turn-off instants. In addition, its diodes operate under soft switching condition. Therefore, no significant switching losses occur in the converter. Since the energy of the snubber circuit is transferred to the output, there are no significant conduction losses. The proposed snubber circuit can be applied on isolated and non-isolated converters. To verify the operation of the snubber circuit, a boost converter using the proposed snubber is implemented at 70W. Also, the measured conducted Efficiency Electromagnetic Interference (EMI) of the proposed boost converter and conventional ones are presented which show the effects of proposed snubber on EMI reduction. The experimental results confirm the presented theoretical analysis.