• Title/Summary/Keyword: Transferred energy

Search Result 430, Processing Time 0.028 seconds

Review of Failure Mechanisms on the Semiconductor Devices under Electromagnetic Pulses (고출력전자기파에 의한 반도체부품의 고장메커니즘 고찰)

  • Kim, Dongshin;Koo, Yong-Sung;Kim, Ju-Hee;Kang, Soyeon;Oh, Wonwook;Chan, Sung-Il
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.18 no.6
    • /
    • pp.37-43
    • /
    • 2017
  • This review investigates the basic principle of physical interactions and failure mechanisms introduced in the materials and inner parts of semiconducting components under electromagnetic pulses (EMPs). The transfer process of EMPs at the semiconducting component level can be explained based on three layer structures (air, dielectric, and conductor layers). The theoretically absorbed energy can be predicted by the complex reflection coefficient. The main failure mechanisms of semiconductor components are also described based on the Joule heating energy generated by the coupling between materials and the applied EMPs. Breakdown of the P-N junction, burnout of the circuit pattern in the semiconductor chip, and damage to connecting wires between the lead frame and semiconducting chips can result from dielectric heating and eddy current loss due to electric and magnetic fields. To summarize, the EMPs transferred to the semiconductor components interact with the chip material in a semiconductor, and dipolar polarization and ionic conduction happen at the same time. Destruction of the P-N junction can result from excessive reverse voltage. Further EMP research at the semiconducting component level is needed to improve the reliability and susceptibility of electric and electronic systems.

Measurement of minimum line width of an object fabricated by metal 3D printer using powder bed fusion type with stainless steal powder (스테인리스강을 사용한 분말 적층 용융 방식의 금속 3차원 프린터에서 제작된 물체의 최소 선폭 측정)

  • Son, BongKuk;Jeong, Youn Hong;Jo, Jae Heung
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.19 no.10
    • /
    • pp.346-351
    • /
    • 2018
  • Metal three-dimensional (3D) printing technologies are mainly classified as powder bed fusion (PBF) and direct energy deposition (DED) methods according to the method of application of a laser beam to metallic powder. The DED method can be used to fabricate fine and hard 3D metallic structures by applying a strong laser beam to a thin layer of metallic powder. The PBF method involves slicing 3D graphics to be a certain height, laminating metal powders, and making a 3D structure using a laser. While the DED method has advantages such as laser cladding and metallic welding, it causes problems with low density when 3D shapes are created. The PBF method was introduced to address the structural density issues in the DED method and makes it easier to produce relatively dense 3D structures. In this paper, thin lines were produced by using PBF 3D printers with stainless-steel powder of roughly $30{\mu}m$ in diameter with a galvano scanner and fiber-transferred Nd:YAG laser beam. Experiments were carried out to find the optimal conditions for the width of a line depending on the processing times, laser power, spot size, and scan speed. The optimal conditions were two scanning processes in one line structure with a laser power of 30 W, spot size of $28.7{\mu}m$, and scan speed of 200 mm/s. With these conditions, a minimum width of about $85.3{\mu}m$ was obtained.

Preliminary Study of Semi-continuous Liquid Recirculating Anaerobic Digestion for Source Separated Food Waste (음식물류 폐기물 처리를 위한 준 회분식 액순환 건식 혐기성 소화법에 대한 기초연구)

  • Cho, Chan-Hui;Lee, Byong-Hi
    • Journal of the Korea Organic Resources Recycling Association
    • /
    • v.23 no.2
    • /
    • pp.28-35
    • /
    • 2015
  • In this study, the experiment was carried out to produce methane by applying Semi-Continuous Leachate Recirculation Anaerobic Digestion System fed with source separated food waste from school cafeteria. There were two systems and each system consisted of a bioreactor and a liquid tank. Each bioreactor had a screen near the bottom of the reactor. 2.5L of separated liquid was transferred to the liquid tank for 30min each day by using a tubing pump and the liquid from the liquid tank was pumped to the bioreactor at the upper of the bioreactor as soon as the transfer was ended. Through this circulation, the liquid having high concentration of VFAs was supplied to the top of bioreactor. At the beginning of the experiment, food waste/inoculum anaerobic sludge volume ratio was 2:8 that is 9g VS/L of OLR(Organic Loading Rate). Feeding was conducted every two weeks. Experimental results showed that the contents of moisture, combustible matter, ash were 65.91%, 32.73%, and 1.36%, respectively. Two different food waste loading were studied. The average organic loading rates were 3.51g VS/d for System A and 3.86g VS/d for System B, respectively. The average produced methane based on food waste fed to bioreactor were observed as $6.30m^3CH_4/kgVS{\cdot}d$ for system A and $4.94m^3CH_4/kgVS{\cdot}d$ for System B, respectively.

Data Weight based Scheduling Scheme for Fair data collection in Sensor Networks with Mobile Sink (모바일 싱크 기반 무선 센서 네트워크에서 균등한 데이타 수집을 위한 데이타 가중치 기반 스케줄링 기법)

  • Jo, Young-Tae;Park, Chong-Myung;Lee, Joa-Hyoung;Jung, In-Bum
    • Journal of KIISE:Information Networking
    • /
    • v.35 no.1
    • /
    • pp.21-33
    • /
    • 2008
  • The wireless sensor nodes near to the fixed sink node suffer from the quickly exhausted battery energy. To address this problem, the mobile sink node has been applied to distribute the energy consumption into all wireless sensor nodes. However, since the mobile sink node moves, the data collection scheduling scheme is necessary for the sink node to receive the data from all sensor nodes as fair as possible. The application fields of wireless sensor network need the real-time processing. If the uneven data collection occurs in the wireless sensor network, the real-time processing for the urgent events can not be satisfied. In this paper, a new method is proposed to support the lair data collection between all sensor nodes. The proposed method performs the scheduling algorithm based on the resident time of the sink node staying in a radius of communication range and the amount of data transferred already. In this paper, the proposed method and existing data collection scheduling schemes are evaluated in wireless sensor network with the mobile sink node. The result shows that the proposed method provides the best fairness among all data collection schemes.

Characteristics of Fermented Wood Chips and Pig Manure (목질칩을 이용한 분뇨 발효 시 목질칩과 돈분뇨의 성분 변화)

  • Kim, Myung-Kil;Choi, Don-Ha;Choi, In-Gyu
    • Journal of Korea Foresty Energy
    • /
    • v.24 no.2
    • /
    • pp.1-9
    • /
    • 2005
  • After manufacturing fermentation system for degrading pig manure using environmentally friendly technique, performance of the system and characteristics of wood chips and pig manure fermented in the system were analyzed. Results from this study shows that proper fermentation temperature($55{\sim}60^{\circ}C$) reached 3days after the system started and degradation rate, which expresses fermentation performance of system, was $180{\iota}$/day. Even as progressing the fermentation of wood chips and pig manure mixture, the amount of extractives drawn out by alkali, and alcohol-benzene and lignin content was not varied. However, ash content in wood was increased. The inorganic compounds in pig manure seem to be transferred into wood chip. On the other hand holocellulose contents in wood were decreased a little. Holocellulose seems to be consumed as the second carbon source in fermentation process. Results through analysis of inorganic- and heavy metal elements contents in wood chips and pig manure fermented in long term process shows that inorganic elements($Ca^{2+},\;Mg^{2+},\;K^+,\;Na^+$ etc.) contents were increased with fermentation time and heavy metal elements(Cd, As, Cu etc.) which cause environmental pollution were not detected. Number of microorganisms including bacteria, actinomycetes, and fungi, the number of C.F.U(Colony Forming Unit) was increased while temperature in fermentation system was abruptly increased.

  • PDF

Anaerobic Digestion of Fish Offal(II) : Evaluation of Biodegradability Using Biochemical Methane Potential (생선 폐기물의 혐기성 소화 처리(II) : Biochemical Methane Potential을 이용한 생분해도 평가)

  • Jeong Byung-Gon
    • Journal of the Korean Society for Marine Environment & Energy
    • /
    • v.9 no.3
    • /
    • pp.154-159
    • /
    • 2006
  • It is essential to understand the decomposition characteristics for developing the optimum anaerobic digestion system of organic wastes. In this study, BMP (Biochemical Methane Potential) test using serum bottle was conducted to evaluate the anaerobic degradability of fish offal. 3 different groups of fish offal including waste from mackerel and hairtail handling except viscera and fish viscera were chosen for the substrates. Grinded fish offal was transferred anaerobically to serum bottle in amounts of 50 ml, 100 ml and 150 ml, respectively. BMP test was carried out in triplicate. Cumulative methane production and methane production rate depending on incubation time were evaluated. These results varied depending on substrate characteristics. The average values of ultimate methane yield ranged between $420ml{\cdot}CH_4/g{\cdot}VS$ and $490ml{\cdot}CH_4/g{\cdot}VS$, and the methane production and degradation rate of viscera were higher than those of other parts of fish offal. According to the analysis of elemental composition, average C/N ratio of fish offal used in this study was 5.2. Theoretical ultimate methane yield calculated from elemental composition was $522ml{\cdot}CH_4/g{\cdot}VS$. Biodegradability was calculated as 0.847.

  • PDF

Performance Comparison of Spray-dried Mn-based Oxygen Carriers Prepared with γ-Al2O3, α-Al2O3, and MgAl2O4 as Raw Support Materials

  • Baek, Jeom-In;Kim, Ui-Sik;Jo, Hyungeun;Eom, Tae Hyoung;Lee, Joong Beom;Ryu, Ho-Jung
    • KEPCO Journal on Electric Power and Energy
    • /
    • v.2 no.2
    • /
    • pp.285-291
    • /
    • 2016
  • In chemical-looping combustion, pure oxygen is transferred to fuel by solid particles called as oxygen carrier. Chemical-looping combustion process usually utilizes a circulating fluidized-bed process for fuel combustion and regeneration of the reduced oxygen carrier. The performance of an oxygen carrier varies with the active metal oxide and the raw support materials used. In this work, spraydried Mn-based oxygen carriers were prepared with different raw support materials and their physical properties and oxygen transfer performance were investigated to determine that the raw support materials used are suitable for spray-dried manganese oxide oxygen carrier. Oxygen carriers composed of 70 wt% $Mn_3O_4$ and 30 wt% support were produced using spray dryer. Two different types of $Al_2O_3$, ${\gamma}-Al_2O_3$ and ${\alpha}-Al_2O_3$, and $MgAl_2O_4$ were applied as starting raw support materials. The oxygen carrier prepared from ${\gamma}-Al_2O_3$ showed high mechanical strength stronger than commercial fluidization catalytic cracking catalyst at calcination temperatures below $1100^{\circ}C$, while the ones prepared from ${\alpha}-Al_2O_3$ and $MgAl_2O_4$ required higher calcination temperatures. Oxygen transfer capacity of the oxygen carrier prepared from ${\gamma}-Al_2O_3$ was less than 3 wt%. In comparison, oxygen carriers prepared from ${\alpha}-Al_2O_3$ and $MgAl_2O_4$ showed higher oxygen transfer capacity, around 3.4 and 4.4 wt%, respectively. Among the prepared Mn-based oxygen carriers, the one made from $MgAl_2O_4$ showed superior oxygen transfer performance in the chemical-looping combustion of $CH_4$, $H_2$, and CO. However, it required a high calcination temperature of $1400^{\circ}C$ to obtain strong mechnical strength. Therefore, further study to develop new support compositions is required to lower the calcination temperature without decline in the oxygen transfer performance.

A Study on the Remediation using Microbial Activator from Oil-Contaminated Soil (미생물활성화제를 이용한 유류오염토양 복원에 관한 연구)

  • Lee, Chae-Young;Chung, Chan-Kyo;Kim, Jong-Moon
    • Journal of the Korea Organic Resources Recycling Association
    • /
    • v.19 no.2
    • /
    • pp.41-48
    • /
    • 2011
  • In this study, the soil remediation by landfarming was carried out using microbial activators. Feasibility studies and reduction capacity of TPH(Total Petroleum Hydrocarbons) were investigated in order to find out how fast and eco-friendly the contaminated soil can be recovered. The lab-test confirmed not only the performance and degradation efficiency of microbial activators but also the effect of TPH reduction in the contaminated soil. The optimum growth conditions for indigenous microorganisms were identified using microbial activators. Based on the results of TPH removal, although there had been a little of difference in between natural decomposition and microbial activators until 20 days, the sample groups of microbial activators were higher than the control ones after 20 days. Microbial activators were applied to the field experiments on landfarming. Based on the results of removal rate in each floor of soil, it was found that the removal rates were 85.8 % in the upper, 84.4 % in the middle, and 66.10 % in the bottom. Considering that the reduction rate of TPH for the control group averaged 71.1%, the microbial activators might not be fully transferred into the bottom, which resulted from the piles of soil. As the piles have already reached 1 m in the field experiments, the low piles of soil under 0.6 m may enhance the treatment efficiency of TPH.

Development of an Algorithm for Predicting the Thermal Distribution by using CT Image and the Specific Absorption Rate

  • Hwang, Jinho;Kim, Aeran;Kim, Jina;Seol, Yunji;Oh, Taegeon;Shin, Jin-sol;Jang, Hong Seok;Kim, Yeon Sil;Choi, Byung Ock;Kang, Young-nam
    • Journal of the Korean Physical Society
    • /
    • v.73 no.10
    • /
    • pp.1584-1588
    • /
    • 2018
  • During hyperthermia therapy, cancer cells are heated to a temperature in the range of $40{\sim}45^{\circ}C$ for a defined time period to damage these cells while keeping healthy tissues at safe temperatures. Prior to hyperthermia therapy, the amount of heat energy transferred to the cancer cells must be predicted. Among various non-invasive methods, the thermal prediction method using the specific absorption rate (SAR) is the most widely used method. The existing methods predict the thermal distribution by using a single constant for the mass density in one organ through assignment. However, because the SAR and the bio heat equation (BHE) vary with the mass density, the mass density of each organ must be accurately considered. In this study, the mass density distribution was calculated using the relationship between the Hounsfield unit and the mass density of tissues in preceding research. The SAR distribution was found using a quasi-static approximation to Maxwell's equation and was used to calculate the potential distribution and the energy distributions for capacitive RF heating. The thermal distribution during exposure to RF waves was determined by solving the BHE with consideration given to the considering contributions of heat conduction and external heating. Compared with reference data for the mass density, our results was within 1%. When the reconstructed temperature distribution was compared to the measured temperature distribution, the difference was within 3%. In this study, the density distribution and the thermal distribution were reconstructed for the agar phantom. Based on these data, we developed an algorithm that could be applied to patients.

A Study on Oxygen Reduction Reaction of PtM Electrocatalysts Synthesized by a Modified Polyol Process (수정된 폴리올 방법을 적용하여 합성한 PtM 촉매들의 산소환원반응성 연구)

  • Yang, Jongwon;Hyun, Kyuwhan;Chu, Cheunho;Kwon, Yongchai
    • Applied Chemistry for Engineering
    • /
    • v.25 no.1
    • /
    • pp.78-83
    • /
    • 2014
  • In this research, we evaluated the performance and characteristics of carbon supported PtM (M = Ni and Y) alloy catalysts (PtM/Cs) synthesized by a modified polyol method. With the PtM/Cs employed as a catalyst for the oxygen reduction reaction (ORR) of cathodes in proton exchange membrane fuel cells (PEMFCs), their catalytic and ORR activities and electrical performance were investigated and compared with those of commercial Pt/C. Their particle sizes, particle distributions and electrochemically active surface areas (EAS) were measured by TEM and cyclic voltammetry (CV), while their ORR activity and electrical performance were explored using linear sweeping voltammetries with rotating disk electrodes and rotating ring-disk electrodes as well as PEMFC single cell tests. TEM and CV measurements show that PtM/Cs have the compatible particle size and EAS with Pt/C. When it comes to ORR activity, PtM/C showed the equivalent or better half-wave potential, kinetic current density, transferred electron number per oxygen molecule and $H_2O_2$ production(%) to or than commerical Pt/C. Based on results gained by the three electrode tests, when the PEMFC single cell tests were carried out, the current density measured at 0.6 V and maximum power density of PEMFC single cell adopting PtM/C catalysts were better than those adopting Pt/C catalyst. It is therefore concluded that PtM/C catalysts synthesized by modified polyol can result in the equivalent or better ORR catalytic capability and PEMFC performance to or than commercial Pt/C catalyst.