• Title/Summary/Keyword: Transfer coefficient

Search Result 2,388, Processing Time 0.024 seconds

A simple practical method for determination of moisture transfer coefficient of mature concrete using a combined experimental-numerical approach

  • Chari, Mehdi Nemati;Shekarchi, Mohammad;Ghods, Pouria;Moradian, Masoud
    • Computers and Concrete
    • /
    • v.18 no.3
    • /
    • pp.367-388
    • /
    • 2016
  • In this paper, a simple practical method is introduced in which a simple weight measurement of concrete and finite element numerical analysis are used to determine the moisture transfer coefficient of concrete with a satisfactory accuracy. Six concrete mixtures with different water-to-cementitious material (w/cm) ratios and two pozzolanic materials including silica fume and zeolite were examined to validate the proposed method. The comparison between the distribution of the moisture content obtained from the model and the one from the experimental data during both the wetting and drying process properly validated the performance of the method.With the proposed method, it was also shown that the concrete moisture transfer coefficient considerably depends on the pore water saturation degree. The use of pozzolanic materials and also lowering w/cm ratio increased the moisture transfer coefficient during the initial sorption, and then, it significantly decreased with an increase in the water saturation degree.

Propulsion Force Coefficient of Injection Nozzle Size on Air Levitation Type Wafer Transfer System (공기부상방식 웨이퍼 이송시스템의 추진 노즐 크기에 따른 추진력계수에 관한 연구)

  • Moon, In-Ho;Cho, Sang-Joon;Hwang, Young-Kyu
    • Journal of the Semiconductor & Display Technology
    • /
    • v.4 no.1 s.10
    • /
    • pp.35-41
    • /
    • 2005
  • An air levitation type wafer transfer system is composed of control and transfer track. Wafer transfer speed is mainly affected by air velocity of propulsion nozzle. In this study, the propulsion force coefficient was evaluated experimentally for the nozzle with 0.5mm, 0.8mm, and 1.0mm diameter. As a result, the propulsion force was largest in the smallest size of nozzle at same air velocity. The propulsion force coefficient of nozzle increases with reducing diameter of nozzle. This increment of propulsion force coefficient was enlarged remarkably at the 0.5mm diameter of nozzle.

  • PDF

A Study on Prediction Model of Heat Transfer Coefficient in the Circulating Fluidized Bed Heat Exchanger with Multiple Vertical Tubes (다관형 고밀도 순환유동층 열교환기의 열전달계수에 대한 예측모델 연구)

  • Park, Sang-Il
    • Proceedings of the SAREK Conference
    • /
    • 2005.11a
    • /
    • pp.288-293
    • /
    • 2005
  • The pressure distribution and heat transfer coefficient were measured at room temperature in the high suspension density CFB heat exchanger with multiple vertical tubes and the effective density of CFB was determined. The theoretical model for predicting heat transfer coefficient was developed in this study. The model predictions were compared with the measured heat transfer coefficient to show relatively good agreement between them.

  • PDF

Numerical study for the fin efficiency of the heat exchanger having plate fins (판형 휜을 갖는 열교환기의 휜효율에 관한 수치해석적 연구)

  • 강희찬
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.11 no.6
    • /
    • pp.903-911
    • /
    • 1999
  • This study is discussed about the heat transfer coefficient and the fin efficiency of the heat exchanger having plate fins. A new definition for the fin efficiency of the heat exchanger is proposed. More than one hundred cases were tested numerically for the plate fins having uniform and non-uniform heat transfer coefficient. The previous models for the fin efficiency and the pure heat transfer coefficient were applicable to the heat exchanger only when the NTU is very small. It was found that the fin efficiency of the heat exchanger was nearly the same as the normalized fin temperature. The present model could estimate the pure heat transfer coefficient within a few percent in the present test range of 0<NTU<2.5.

  • PDF

Free Vibration Analysis of Lattice Type Structure by Transfer Stiffness Coefficient Method (전달 강성계수법에 의한 격자형 구조물의 자유 진동 해석)

  • 문덕홍;최명수;강화중
    • Journal of KSNVE
    • /
    • v.8 no.2
    • /
    • pp.361-368
    • /
    • 1998
  • Complex and large lattice type structures are frequently used in design of bridge, tower, crane and aerospace structures. In general, in order to analyze these structures we have used the finite element method(FEM). This method is the most widely used and powerful tool for structural analysis. However, it is necessary to use a large amount of computer memory and computation time because the FEM resuires many degrees of freedom for solving dynamic problems exactly for these complex and large structures. For overcoming this problem, the authors developed the transfer stiffness coefficient method(TSCM). This method is based on the concept of the transfer of the nodal dynamic stiffness coefficient which is related to force and displacement vector at each node. In this paper, the authors formulate vibration analysis algorithm for a complex and large lattice type structure using the transfer of the nodal dynamic stiffness coefficient. And we confirmed the validity of TSCM through numerical computational and experimental results for a lattice type structure.

  • PDF

A Prediction of Pollutant Emission Rate using Numerical Analysis and CFD in Double-Layered Building Materials (수치해석 및 CFD를 이용한 소형챔버내 복합건축자재의 오염물질 방출량 예측)

  • Kim, Chang-Nam;Leigh, Seung-Bok;Kim, Tae-Yeon
    • Proceedings of the SAREK Conference
    • /
    • 2006.06a
    • /
    • pp.277-282
    • /
    • 2006
  • In order to predict the indoor air pollutant, the VOCs emission rate is used through small chamber in the design process. However, the small chamber method has limitations as the convective mass transfer coefficient, the most important factor when predicting VOCs contamination of indoor air, is different between the small chamber result and the measured data in the actual building. Furthermore, the existing studies which analyzed mass transfer coefficient in the small chamber were directed on the small chambers developed at the time and FLEC(Field and Laboratory Emission Cell), thus, are different from the current small chamber which has been changed with improvements. The purpose of this study is to determine the emission rate of pollutant in double-layered building materials through the CFD(Computational of Fluid Dynamics) and Numerical analysis based on the mass transfer coefficient on singled-layered building material by using the current small chamber widely used in Korea. Futhermore, this study used the new convective mass transfer coefficient($h_m'$) which indicates the existing convective mass transfer coefficient($h_m$) including VOC partition coefficient(k). Also, formaldehyde was selected as target pollutant.

  • PDF

Establishing non-linear convective heat transfer coefficient

  • Cuculic, Marijana;Malic, Neira Toric;Kozar, Ivica;Tibljas, Aleksandra Deluka
    • Coupled systems mechanics
    • /
    • v.11 no.2
    • /
    • pp.107-119
    • /
    • 2022
  • The aim of the work presented in this paper is development of numerical model for prediction of temperature distribution in pavement according to the measured meteorological parameters, with introduction of non-linear heat transfer coefficient which is a function of temerature difference between the air and the pavement. Developed model calculates heat radiated from the pavement back in the air, which is an important part of the heat trasfer process in the open air surfaces. Temperature of the pavement surface, heat radiation together with many meteorological parameters were measured in series during two years in order to validate the model and calibrate model parameters. Special finite element method for temperature heat transfer towards the soil together with the time integration scheme are used to solve the governing equation. It is proved that non-linear heat transfer coefficient, which is a function of time and temperature difference between the air and the pavement, is required to decribe this phenomena. Proposed model includes heat tranfer coefficient callibration for specific climate region, through the iterative inverse procedure.

Boiling Heat Transfer of Ammonia inside Horizontal Smooth Small Tube (수평미세관내 NH3 비등열전달 특성)

  • Choi, Kwang-Il;Oh, Jong-Taek
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.25 no.2
    • /
    • pp.101-108
    • /
    • 2013
  • This paper is presented an experimental study of flow boiling heat transfer characteristics of ammonia, and is focused on pressure gradient and heat transfer coefficient of the refrigerant flow inside horizontal small tube with inner diameter of 3.0 mm and length of 2000 mm. The direct heating method is applied for supplying heat to the refrigerant, where the test tube is uniformly heated by electric current. The local heat transfer coefficients were obtained over a heat flux range of 20 to $80kW/m^2$, a mass flux range of 50 to $500kg/m^2s$, a saturation temperature range of 0 to $10^{\circ}C$, and quality up to 1.0. The pressure drops increase with increasing mass flux and heat flux, and with decreasing saturation temperature. The heat transfer coefficients increase with increasing mass flux and saturation temperature in middle and high quality region. And the local heat transfer coefficient increase with increasing heat flux in low quality region. The heat transfer coefficient of the experimental result was compared with six existing heat transfer coefficient correlation. A new boiling heat transfer coefficient correlation based on the superposition model for ammonia in small tubes is developed average deviation of -0.17% and mean deviation of 10.85%.

Computer Analysis of Heat Transfer in Squeeze Casting (용탕단조에 있어서의 열전달 해석)

  • Yoo, Seung-Mok;Han, Yo-Sub;Lee, Ho-In;Hong, Chun-Pyo
    • Journal of Korea Foundry Society
    • /
    • v.10 no.6
    • /
    • pp.495-502
    • /
    • 1990
  • A basic heat flow model has been developed to estimate the heat transfer coefficient at the casting/mold interface during squeeze casting. Based on the measured temperature profiles in squeeze casting of Al-4.5%Si alloy, heat transfer coefficients which vary with time were calculated by numerical method. The influences of the load and the amount of fraction solid on the heat transfer coefficient have also been studied. Using the calculated heat transfer coefficient two dimensional solidification analysis in the squeeze casting process was carried out by the finite difference method, and the results were in good agreement with the experiments. It may be concluded that heat flow analysis in the squeeze casting process with accurate heat transfer coefficient at the casting /mold interface is important for a proper design of cooling in die and finally for improving productivity and die life as well.

  • PDF

Fluid Flow and Convective Heat Transfer Characteristics of Al2O3 Nanofluids (알루미나 나노유체의 유동 및 대류 열전달 특성)

  • Hwang, Kyo-Sik;Lee, Ji-Hwan;Lee, Byeong-Ho;Jang, Seok-Pil
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.31 no.1 s.256
    • /
    • pp.16-20
    • /
    • 2007
  • In this paper, convective heat transfer and flow characteristics of $Al_2O_3$ nanoparticles suspended in water flowing through uniformly heated tubes are experimentally investigated under laminar flow regime. The heat transfer coefficient and the pressure drop of nanoparticles suspended in water are experimentally presented according to the pumping power. In addition, the heat transfer coefficient and the pressure drop of $Al_2O_3$ nanoparticles suspended in water are compared with those of pure water under the fixed pumping power. It is shown that the heat transfer coefficient of $Al_2O_3$ nanofluids with 0.1% volume fraction is enhanced by about 12% although the increment of the pressure drop of those is 4% compared with those of pure water.