• Title/Summary/Keyword: Transfer Functions

Search Result 1,027, Processing Time 0.024 seconds

Nonlinear Characteristic of a Tuned Liquid Column Damper under Various Excitation Amplitudes (가진입력의 크기에 따른 동조액체기둥감쇠기의 비선형 특성)

  • Lee, Sung-Kyung;Lee, Hye-Ri;Min, Kyung-Won
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2009.10a
    • /
    • pp.842-849
    • /
    • 2009
  • The objective of this study is to investigate design parameters of a tuned liquid column damper(TLCD), which is affected by various excitation amplitudes, through shaking table test. Design parameters of a TLCD are examined based on the equivalent tuned mass damper(TMD) model of a TLCD, in which the nonlinear damping of a TLCD is transposed to equivalent viscous damping. Shaking table test is carried out for a TLCD specimen subjected to harmonic waves with various amplitudes. Transfer functions are ratios of liquid displacement of TLCD and control force produced by a TLCD, respectively, with respect to the acceleration excited by a shaking table. They are derived based on the equivalent TMD model of a TLCD. Then, the variation of design parameters according to the excitation amplitude is examined by comparing analytical transfer functions with experimental ones. Finally, the dissipation energy due to the damping of a TLCD, which is experimentally observed from the shaking table test, is examined according to the excitation amplitude. Comparisons between test results and analytical transfer functions showed that natural frequencies of TLCD and the ratio of the liquid mass in a horizontal column to the total liquid mass does not depend on the excitation amplitude, while the damping ratio of a TLCD increases with larger excitation amplitudes.

  • PDF

Predictions of Unbalanced Response of Turbo Compressor Equipped with Active Magnetic Bearings through System Identification (시스템 식별을 통한 자기베어링 장착 터보 압축기의 불평형 응답 예측)

  • Baek, Seongiki;Noh, Myounggyu;Lee, Kiwook;Park, Young-Woo;Lee, Nam Soo;Jeong, Jinhee
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.40 no.1
    • /
    • pp.97-102
    • /
    • 2016
  • Since vibrations in rotating machinery is a direct cause of performance degradation and failures, it is very important to predict the level of vibrations as well as have a method to lower the vibrations to an acceptable level. However, the changes in balancing during installation and the vibrational modes of the support structure are difficult to predict. This paper presents a method for predicting the unbalanced response of a turbo-compressor supported by active magnetic bearings (AMBs). Transfer functions of the rotor are obtained through system identification using AMBs. These transfer functions contain not only the dynamics of the rotor but also the vibrational modes of the support structure. Using these transfer functions, the unbalanced response is calculated and compared with the run-up data obtained from a compressor prototype. The predictions revealed the effects of the support structure, validating the efficacy of the method.

Spectral Fatigue Analysis for Topside Structure of Offshore Floating Vessel

  • Kim, Dae-Ho;Ahn, Jae-Woo;Park, Sung-Gun;Jun, Seock-Hee;Oh, Yeong-Tae
    • Journal of Advanced Research in Ocean Engineering
    • /
    • v.1 no.4
    • /
    • pp.239-251
    • /
    • 2015
  • In this study, a spectral fatigue analysis was performed for the topside structure of an offshore floating vessel. The topside structure was idealized using beam elements in the SACS program. The fatigue analysis was carried out considering the wave and wind loads separately. For the wave-induced fatigue damage calculation, motion RAOs calculated from a direct wave load analysis and regular waves with different periods and unit wave heights were utilized. Then, the member end force transfer functions were generated covering all the loading conditions. Stress response transfer functions at each joint were produced using the specified SCFs and member end force transfer functions. fatigue damages were calculated using the obtained stress ranges, S-N curve, wave spectrum, heading probability of each loading condition, and their corresponding occurrences in the wave scatter diagrams. For the wind induced fatigue damage calculation, a dynamic wind spectral fatigue analysis was performed. First, a dynamic natural frequency analysis was performed to generate the structural dynamic characteristics, including the eigenvalues (natural frequencies), eigenvectors (mode shapes), and mass matrix. To adequately represent the dynamic characteristic of the structure, the number of modes was appropriately determined in the lateral direction. Second, a wind spectral fatigue analysis was performed using the mode shapes and mass data obtained from the previous results. In this analysis, the Weibull distribution of the wind speed occurrence, occurrence probability in each direction, damping coefficient, S-N curves, and SCF of each joint were defined and used. In particular, the wind fatigue damages were calculated under the assumption that the stress ranges followed a Rayleigh distribution. The total fatigue damages were calculated from the combination with wind and wave fatigue damages according to the DNV rule.

preprocessing methodology to reducing calculation errors in 3 dimensional model for development of heat transfer analysis program for 3 dimensional structure of building (건물의 3차원 구조체에 대한 전열해석 프로그램 개발 중 3차원 모델의 해석 오류 저감을 위한 사전 수정 방법 연구)

  • Lee, Kyusung;Lee, Juhee;Lee, Yongjun
    • KIEAE Journal
    • /
    • v.16 no.1
    • /
    • pp.89-94
    • /
    • 2016
  • This study is part of three-dimensional(3D) heat transfer analysis program developmental process. The program is being developed without it's own built in 3D-modeller. So 3D-model must be created from another 3D-modeller such as generic CAD programs and imported to the developed program. After that, according to the 3D-geometric data form imported model, 3D-mesh created for numerical calculation. But the 3D-model created from another 3D-modeller is likely to have errors in it's geometric data such as mismatch of position between vertexes or surfaces. these errors make it difficult to create 3D-mesh for calculation. These errors are must be detected and cured in the pre-process before creating 3D-mesh. So, in this study four kinds of filters and functions are developed and tested. Firstly, 'vertex error filter' is developed for detecting and curing for position data errors between vertexes. Secondly, 'normal vector error filter' is developed for errors of surface's normal vector in 3D-model. Thirdly, 'intersection filter' is developed for extracting and creating intersection surface between adjacent objects. fourthly, 'polygon-line filter' is developed for indicating outlines of object in 3D-model. the developed filters and functions were tested on several shapes of 3D-models. and confirmed applicability. these developed filters and functions will be applied to the developed program and tested and modified continuously for less errors and more accuracy.

Finite Element Model Updating and System Identification of Reinforced Concrete Specimen (철근콘크리트 실험체의 시스템 식별과 유한요소모델수정)

  • Kim, Hack-Jin;Yu, Eun-Jong;Kim, Ho-Geun;Lee, Sang-Hyun;Cho, Seung-Ho;Chung, Lan
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2008.04a
    • /
    • pp.647-652
    • /
    • 2008
  • This paper focused on the application of finite element model updating technique to evaluate the structural properties of the reinforced concrete specimen using the data collected from shaking table tests. The specimen was subjected to six El Centro(NS, 1942) ground motion histories with different Peak Ground Acceleration(PGA) ranging from 0.06g to 0.50g. For model updating, flexural stiffness values of structural members(walls and slabs) were chosen as the updating parameters so that the converged results have direct physical interpretations. Initial values for finite element model were determined from the member dimensions and material properties. Frequency response functions(i.e. transfer functions), natural frequencies and mode shapes were obtained using the acceleration measurement at each floor and given ground acceleration history. The weighting factors were used to account for the relative confidence in different types of inputs for updating(i.e. transfer function and natural frequencies). The constraints based on upper/lower bound of parameters and sensitivity-based constraints were implemented to the updating procedure in this study using standard bounded variable least-squares(BVLS) method. The veracity of the updated finite element model was investigated by comparing the predicted and measured responses. The results indicated that the updated model replicates the dynamic behavior of the specimens reasonably well. At each stage of shaking, severity of damage that results from cracking of the reinforced concrete member was quantified from the updated parameters(i.e. flexural stiffness values).

  • PDF

Nonlinear Characteristic of a Tuned Liquid Column Damper under Various Excitation Amplitude (가진입력의 크기에 따른 동조액체기둥감쇠기의 비선형 특성)

  • Lee, Sung-Kyung;Lee, Hye-Ri;Min, Kyung-Won
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.19 no.11
    • /
    • pp.1167-1176
    • /
    • 2009
  • The objective of this study is to investigate design parameters of a tuned liquid column damper(TLCD), which is affected by various excitation amplitude, through shaking table test. Design parameters of a TLCD are examined based on the equivalent tuned mass damper(TMD) model of a TLCD, in which the nonlinear damping of a TLCD is transposed to equivalent viscous damping. Shaking table test is carried out for a TLCD specimen subjected to harmonic waves with various amplitude. Transfer functions are ratios of liquid displacement of TLCD and control force produced by a TLCD, respectively, with respect to the acceleration excited by a shaking table. They are derived based on the equivalent TMD model of a TLCD. Then, the variation of design parameters according to the excitation amplitude is examined by comparing analytical transfer functions with experimental ones. Finally, the dissipation energy due to the damping of a TLCD, which is experimentally observed from the shaking table test, is examined according to the excitation amplitude. Comparisons between test results and analytical transfer functions showed that natural frequencies of TLCD and the ratio of the liquid mass in a horizontal column to the total liquid mass do not depend on the excitation amplitude, while the damping ratio of a TLCD increases with larger excitation amplitude.

Finite Element Model Updating and System Identification of Reinforced Concrete Specimen (철근콘크리트 실험체의 시스템 식별과 유한요소 모델 수정)

  • Kim, H.J.;Yu, E.J.;Kim, H.G.;Chang, K.K.;Lee, S.H.;Cho, S.H.;Chung, L.
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.18 no.7
    • /
    • pp.725-731
    • /
    • 2008
  • This paper focused on the application of finite element model updating technique to evaluate the structural properties of the reinforced concrete specimen using the data collected from shaking table tests. The specimen was subjected to six El Centre (NS, 1942) ground motion histories with different peak ground acceleration (PGA) ranging from 0.06 g to 0.50 g. For model updating, flexural stiffness values of structural members (walls and slabs) were chosen as the updating parameters so that the converged results have direct physical interpretations. Initial values for finite element model were determined from the member dimensions and material properties. Frequency response functions (i.e. transfer functions), natural frequencies and mode shapes were obtained using the acceleration measurement at each floor and given ground acceleration history. The weighting factors were used to account for the relative confidence in different types of Inputs for updating (j.e. transfer function and natural frequencies) The constraints based on upper/lower bound of parameters and sensitivity-based constraints were implemented to the updating procedure in this study using standard bounded variable least-squares(BVLS) method. The veracity of the updated finite element model was investigated by comparing the predicted and measured responses. The results indicated that the updated model replicates the dynamic behavior of the specimens reasonably well. At each stage of shaking, severity of damage that results from cracking of the reinforced concrete member was quantified from the updated parameters (i.e. flexural stiffness values).

Transfer Function Model Forecasting of Sea Surface Temperature at Yeosu in Korean Coastal Waters (전이함수모형에 의한 여수연안 표면수온 예측)

  • Seong, Ki-Tack;Choi, Yang-Ho;Koo, Jun-Ho;Lee, Mi-Jin
    • Journal of the Korean Society of Marine Environment & Safety
    • /
    • v.20 no.5
    • /
    • pp.526-534
    • /
    • 2014
  • In this study, single-input transfer function model is applied to forecast monthly mean sea surface temperature(SST) in 2010 at Yeosu in Korean coastal waters. As input series, monthly mean air temperature series for ten years(2000-2009) at Yeosu in Korea is used, and Monthly mean SST at Yeosu station in Korean coastal waters is used as output series(the same period of input). To build transfer function model, first, input time series is prewhitened, and then cross-correlation functions between prewhitened input and output series are determined. The cross-correlation functions have just two significant values at time lag at 0 and 1. The lag between input and output series, the order of denominator and the order of numerator of transfer function, (b, r, s) are identified as (0, 1, 0). The selected transfer function model shows that there does not exist the lag between monthly mean air temperature and monthly mean SST, and that transfer function has a first-order autoregressive component for monthly mean SST, and that noise model was identified as $ARIMA(1,0,1)(2,0,0)_{12}$. The forecasted values by the selected transfer function model are generally $0.3-1.3^{\circ}C$ higher than actual SST in 2010 and have 6.4 % mean absolute percentage error(MAPE). The error is 2 % lower than MAPE by ARIMA model. This implies that transfer function model could be more available than ARIMA model in terms of forecasting performance of SST.

A Study of Prediction of Gas Transfer rate in Intravascular Lung Assist Device (혈관 내 폐 보조장치에서의 산소전달속도 예측에 관한 연구)

  • 김기범;나도춘;김성종;정인수;정경락;권대규
    • Membrane Journal
    • /
    • v.14 no.1
    • /
    • pp.18-25
    • /
    • 2004
  • The purpose of this paper was to find out the proper equation to predict the gas transfer rate for designing intravenous artificial lung assist device. The prepared hollow fiber modules were examined under various experimental conditions through experimental modeling before inserted the artificial lung assist d $\varepsilon$ vice into as venous. As a result, we can estimate the gas transfer as a function of the packing density. The gas transfer obtained from the experiment was similar to that from the equation, confirming the usefulness equation. Therefore, we can conclude the gas transfer of the intravenous artificial lung assist device as a function of the packing density, and this functions are very useful for predicting the gas transfer of the intravenous artificial lung assist device.

A study on the construction of balanced realization

  • Wada, Kiyoshi;Lu, Ji-Cheng;Sagara, Setsuo
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1991.10b
    • /
    • pp.1623-1626
    • /
    • 1991
  • The paper considers the algorithms of balanced realization from SISO transfer functions. Some methods which have been proposed to find a balanced realization from the companion form realization, are investigated. Then a new method is proposed which finds a balanced realization from the discrete Schwarz form realization. The process of computing the elements of Schwarz matrix from the transfer function is equivalent to the Schur-Cohn stability test procedure. Comparison of the proposed method with the previous works is also discussed.

  • PDF