• Title/Summary/Keyword: Transfer Duct

Search Result 215, Processing Time 0.028 seconds

Augmented heat transfer in a rectangular duct with angled ribs (사각 덕트내 요철의 각도 변화에 따른 열전달 특성)

  • U, Seong-Je;Kim, Wan-Sik;Jo, Hyeong-Hui
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.22 no.4
    • /
    • pp.530-541
    • /
    • 1998
  • Heat transfer augmentation in a rib-roughened duct is affected by the rib configurations, such as rib height, angle of attack, shape, rib to rib pitch, and aspect ratio of a duct. These have been the main subjects in studying the average heat transfer and the friction loss of the fully developed flow. Investigating distributions of local heat transfer coefficients and flow patterns in a duct with the rib turbulators is necessary to find the characteristics of heat transfer augmentation and to decide the optimal configurations of ribs. In the present study the numerical analyses and the mass transfer experiments are performed to understand the flow through a rib roughened duct and the heat transfer characteristics with various angles of attack of ribs. A pair of counter-rotating secondary flow in a duct has a main effect on the lateral distributions of local mass transfer coefficients. Downwash of the rotating secondary flow, reattachment of main flow between ribs and the vortices near ribs and wall enhanced the mass transfer locally up to 8 times of that in case of the duct without ribs.

Numerical Analysis on the Thermal and Fluid in Air Conditioning Duct for Marine Offshore (해양 구조물용 공조덕트 열유동에 관한 수치해석)

  • Yi, Chung-Seob;Lee, Byung-Ho;Chin, Do-Hun
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.18 no.2
    • /
    • pp.7-13
    • /
    • 2019
  • This study is about distributions of heat transfer in air conditioning duct used for marine and oil drilling ship. As the convective heat transfer coefficient increased, heat transfer was conducted dynamically to inside as it exited to the outlet of duct. So, it was checked that the amount of heat transfer generated at duct increased as the convective heat transfer coefficient increased. In case the convective heat transfer coefficient was low, the temperature of duct showed the relatively high temperature distribution due to the temperature influence of internal fluid as the heat transfer between the outside and inside of the duct. In case of temperature distribution generated the volume of the duct along the change of the convective heat transfer coefficient, it was found out that the temperature descended as heat transfer was promoted and the convective heat transfer coefficient increased.

Effects of Reynolds Number on Flow and Heat/Mass Characteristics Inside the Wavy Duct (Reynolds 수에 따른 꺾어진 덕트에서 열/물질전달 특성 고찰)

  • 장인혁;황상동;조형희
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.15 no.10
    • /
    • pp.809-820
    • /
    • 2003
  • The present study investigates effects of flow velocity on the convective heat/mass transfer characteristics in wavy ducts of a primary surface heat exchanger application. Local heat/mass transfer coefficients on the wavy duct sidewall are determined by using a naphthalene sublimation technique. The flow visualization technique is used to understand the overall flow structures inside the duct. The aspect ratio and corrugation angle of the wavy duct is fixed at 7.3 and 145$^{\circ}$ respectively, and the Reynolds numbers, based on the duct hydraulic diameter, vary from 100 to 5,000. The results show that there exist complex secondary flows and transfer processes resulting in non-uniform distributions of the heat/mass transfer coefficients on the duct side walls. At low Re (Re<1000), relatively high heat/mass transfer regions like cell shape appear on both pressure and suction side wall due to the secondary vortex flows called Taylor-Gortler vortices perpendicular to the main flow direction. However, at high Re (Re>1000), these secondary flow cells disappear and boundary layer type flow characteristics are observed on pressure side wall and high heat/mass transfer region by the flow reattachment appears on the suction side wall. The average heat/mass transfer coefficients are higher than those of the smooth circular duct due to the secondary flows inside wavy duct. And also friction factors are about two times greater than those of the smooth circular duct.

Effects of Rib Cross Section Shapes on Heat Transfer of a Rib-Roughened Duct (터빈 기익 내부관 열전달 증대를 위해 설치된 요철의 형상 효과)

  • Wu, Seong Je;Kwon, Hyuk Jin;Cho, Hyung Hee
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.23 no.1
    • /
    • pp.149-157
    • /
    • 1999
  • Heat transfer in a duct is augmented remarkably by rib turbulators. However, increasing friction loss is accompanied due to ribs disturbing flows. Hence, pressure drops and heat transfer are considered simultaneously to decide heat/mass transfer performance in a rib-roughened duct. In the present study, the effects of rib cross section shape on pressure drop through a duct are investigated as well as those on heat transfer characteristics. The results show that the characteristics of heat/mass transfer and friction loss in the duct roughened with triangular ribs are similar to those with square ribs, while significantly different from those with semicircular ribs. The best performance in the duct is obtained by using semicircular shaped ribs among three types of ribs for the large rib angles of ${\alpha}{\geq}63^{\circ}$.

Effects of dimple/protrusion array on heat transfer coefficients in rectangular wavy duct (주름진 덕트에서 딤플/돌출 형상이 열전달계수에 미치는 영향)

  • Kwon, Hyun-Goo;Hwang, Sang-Dong;Cho, Hyung-Hee
    • Proceedings of the KSME Conference
    • /
    • 2008.11b
    • /
    • pp.2352-2356
    • /
    • 2008
  • Heat transfer and performance characteristics have been investigated for a rectangular wavy duct with dimple or protrusion arrays. The test duct was 15mm in height and 105mm wide. The print diameter of the dimple/protrusion wall was 12.99mm and the depth/height of the dimple/protrusion was 3.75mm. Local heat transfer coefficients on the dimple/protrusion wall were measured using a transient TLC technique. The Reynolds number was varied from 3,000 to 10,000. For the wavy duct tested in this study, adverse static pressure characteristics occurred at turning region of the wavy duct due to secondary flows. For the wavy duct with protrusion array, higher heat transfer enhancement level of 7.4 times than smooth straight case in maximum was obtained at low Reynolds number due to the high heat transfer enhancement by vortex flows. Also, the protrusion array increased the performance level of 3.0 at low Reynolds number of 3,000.

  • PDF

Numerical Analysis on the Thermal and Fluid in Air Conditioning Duct for Marine Offshore (해양 구조물용 공조덕트 열유동에 관한 수치해석)

  • Yi, Chung-Seob;Lee, Byung-Ho;Chin, Do-Hun
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.17 no.5
    • /
    • pp.23-29
    • /
    • 2018
  • This study is about the distribution of heat transfer in air conditioning ducts used for marine vessels and oil drilling platforms. As the convective heat transfer coefficient increased, heat transfer was conducted dynamically to inside as it exited to the outlet of duct. The experiment was to determine if the amount of heat transfer generated at the duct exit increased as the convective heat transfer coefficient increased. When the convective heat transfer coefficient was low, the temperature of the duct showed a relatively high temperature difference between the outside and inside of the duct due to the temperature influence of the internal fluid. In case of temperature distribution generated the volume of the duct along the change of the convective heat transfer coefficient, the temperature descended as heat transfer was promoted and the convective heat transfer coefficient increased.

COMPARISONS BETWEEN MEASURED AND COMPUTED FLUID FLOWS AND HEAT TRANSFER IN RECTANGULAR DUCT SYSTEM (사각 덕트 계통에서 유동과 열전달의 수치계산과 실험의 비교)

  • Yoon Y.H.;Kim K.H.
    • 한국전산유체공학회:학술대회논문집
    • /
    • 2005.10a
    • /
    • pp.67-74
    • /
    • 2005
  • Fluid flow and heat transfer in rectangular duct system are measured and computed by commercial software of Star-CD for comparison between them. Three rectangular systems are investigated in this study. Those are a rectangular duct with 90 degree bended elbow, a rectangular duct with two branchs, and a circular cylinder in a rectangular duct. But heat transfer is studied only for last system. These investigations show us that the numerical solutions predict satisfactorily design factors (K-factor for the elbowed duct, distributions of flow rates into each branch from a duct, and Nusselt number around circular cylinder) even though there are some disagreements in velocity profiles and turbulent kinetic energy.

  • PDF

Heat/Mass Transfer and Pressure Drop of Square Duct with V-shape Ribs (쐐기형 요철이 설치된 사각덕트에서의 열전달 및 압력강하 특성)

  • Choi, Chung;Rhee, Dong-Ho;Cho, Hyung-Hee
    • Proceedings of the KSME Conference
    • /
    • 2001.11b
    • /
    • pp.280-287
    • /
    • 2001
  • The present study investigates convective heat/mass transfer and flow characteristics inside the rib-roughened cooling passage of the gas turbine blades. A square duct with rectangular ribs is used and $\wedge-$ and V-shape ribs with $60^{\circ}$ attack angle are installed on the test plate surfaces. Naphthalene sublimation technique is employed to determine the detailed local heat transfer coefficients using the heat and mass transfer analogy. The ribs disturb the main flow resulting in the recirculation and secondary flows near the ribbed wall and the vortices near the side-wall. The local heat transfer and the secondary flow in the duct are changed largely according to the rib orientation. A square duct with $\wedge$ and V-shape ribs has two pairs of secondary flow because of the rib arrangement. So, the duct has complex heat/mass transfer distribution. The average heat/mass transfer coefficient and pressure drop of $\wedge-$ and V-shape ribs are higher than those with $90^{\circ}$ and $60^{\circ}$ attack angles. The average heat/mass transfer coefficient on the $\wedge-shape$ ribs is higher than that on the V-shape ribs. Also, the uniformity of heat/mass transfer coefficient on discrete ribs is higher than that on continuous rib.

  • PDF

EFFECTS OF RIB ARRANGEMENTS AND ROTATION ON HEAT TRANSFER IN A ROTATING TWO-PASS DUCT (회전덕트에서 요철 배열 및 회전수 변화에 따른 열전달 특성)

  • Kim, Kyung-Min;Kim, Yun-Young;Lee, Dong-Ho;Cho, Hyung-Hee
    • Proceedings of the KSME Conference
    • /
    • 2003.04a
    • /
    • pp.2211-2218
    • /
    • 2003
  • The present study investigates heat/mass transfer characteristics in a rotating two-pass duct for smooth and ribbed surfaces. The duct has an aspect ratio of 0.5 and a hydraulic diameter of 26.67 mm. 70-angled rib turbulators are attached on the leading and trailing sides of the duct in parallel and cross arrangements. The pitch-to-rib height ratio is 7.5 and the rib height-to-hydraulic diameter ratio is 0.075. The Reynolds number based on the hydraulic diameter is constant at 10,000 and the rotation number ranges from 0.0 to 0.2 Detailed local heat/mass transfer coefficients are measured using a naphthalene sublimation technique. The results show that the secondary flows generated by the $180^{\circ}-turn$, rib turbulators, and duct rotation affect the wall heat/mass transfer distribution significantly, As the duct rotates, the rotaion-induced Coriolis force deflects the main flow and results in differences on the heat/mass transfer distribution between the leading and trailing surfaces. Its effects become more dominant as the rotaion number increases. Discussions are presented describing how the rib configuration and the rotaion speed affect the flow patterns and local heat/mass transfer in the duct.

  • PDF

Detailed Measurement of Heat/Mass Transfer in a Rotating Two-Pass Duct (I) - Effects of Rib Tubulators - (이차 냉각 유로를 가진 회전덕트에서 열/물질전달 특성 (I) - 요철 설치에 따른 영향 -)

  • Kim, Kyung-Min;Kim, Sang-In;Kim, Yun-Young;Rhee, Dong-Ho;Cho, Hyung-Hee
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.28 no.8 s.227
    • /
    • pp.910-920
    • /
    • 2004
  • The heat/mass transfer characteristics in a rotating two-pass duct with and without rib turbulators are investigated in the present study. The square duct has a hydraulic diameter ($D_h$) of 26.7 mm, and $1.5\;mm{\times}1.5\;mm$ square $90^{\circ}$-rib turbulators are attached on the leading and trailing walls. The pitch-to-rib height ratio (p/e) is 10. The Reynolds number based on the hydraulic diameter is kept constant at 10,000 to exclude the Reynolds effect, and the rotation number is varied from 0.0 to 0.20. In the smooth duct, the curvature of the $180^{\circ}$-turn produces Dean vortices that enhance heat/mass transfer in the post-turn region. When rib turbulators are installed, heat/mass transfer is augmented 2.5 times higher than that of the smooth duct since the main flow is turbulated by reattaching and separating in the vicinity of the duct surfaces. The duct rotation results in heat/mass transfer discrepancy so that Sherwood number ratios are higher on the trailing surface in the first-pass and on the leading surface in the second-pass. In the turning region, Dean vortices shown in the stationary case transform into one large asymmetric vortex cell, and subsequent heat/mass transfer characteristics also change. As the rotation number increases, the heat/mass transfer discrepancy enlarges.