• Title/Summary/Keyword: Transfer Delay

Search Result 571, Processing Time 0.03 seconds

Measurement Time-Delay Error Compensation for Transfer Alignment (전달정렬의 측정치 시간지연 오차보상 기법)

  • Lim, You-Chol;Song, Gi-Won;Lyou, Joon
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.7 no.11
    • /
    • pp.953-957
    • /
    • 2001
  • This paper is concerned with a transfer alignment method for the SDINS under ship motions. Major error sources of transfer alignment are data transfer time-delay, lever-arm velocity and ship body flexure. Specifically, to reduce alignment errors induced by measurement time-delay effects, the error compensation method through delay state augmentation is suggested. A linearized error model for the velocity and attitude matching transfer alignment system is first derived by linearizing the nonliner measurement equation with respect to its time delay and augmenting the delay state into the conventional linear state equations. And then it is shown via observability analysis and computer simulations that the delay state can be estimated and compensated during ship motions resulting in considerably less alignment errors.

  • PDF

Measurement Time-Delay Error Compensation For Transfer Alignment

  • Lim, You-Chol;Song, Ki-Won;Joon Lyou
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2000.10a
    • /
    • pp.486-486
    • /
    • 2000
  • This paper is concerned with a transfer alignment method for the SDINS(StrapDown Inertial Navigation System) under ship motions. Major error sources of transfer alignment are data transfer time-delay, lever-arm velocity and ship body flexure. Specifically, to reduce alignment errors induced by measurement time-delay effects, the error compensation method through delay state augmentation is suggested. A linearized error model for the velocity and attitude matching transfer alignment system is first derived by linearizing the nonlinear measurement equation with respect to its time delay and augmenting the delay state into the conventional linear state equations. And then it is shown via observability analysis and computer simulations that the delay state can be estimated and compensated during ship motions resulting in considerably less alignment errors.

  • PDF

Compensation Technique of Measurement Time Delay in Transfer Alignment Using the Double Moving Window Buffer (이중 Moving Window 버퍼 기반 전달정렬 측정치 시간지연 보상기법)

  • Kim, Cheon-Joong;Lyou, Joon
    • Journal of the Korea Institute of Military Science and Technology
    • /
    • v.14 no.4
    • /
    • pp.684-693
    • /
    • 2011
  • Measurement time delay in the transfer alignment is very important. It has been well known that the time delay degrades the alignment performance and makes some navigation errors on the transfer alignment of slave INS(SINS). Therefore there are many schemes to eliminate that time delay but the compensation technique through the estimation by Kalman filter through modeling the time delay as a random constant is generally used. In the case of change over measurement time delay or the large measurement time delay, estimation performance in the existing compensation technique is degraded because model of time delay is not correct any more. In this paper, we propose the method to keep the time delay almost constant even though in the abnormal communication state and very small through feedback compensation using double buffer. Double buffer consists of two moving window to temporarily store measurements from master INS and slave INS in real time.

A Transfer Alignment Considering Measurement Time-Delay and Ship Body Flexure (측정치 시간지연과 선체의 유연성을 고려한 전달정렬 기법)

  • Lim, You-Chol;Lyou, Joon
    • Journal of the Korea Institute of Military Science and Technology
    • /
    • v.4 no.1
    • /
    • pp.225-233
    • /
    • 2001
  • This paper deals with the transfer alignment problem of SDINS(StrapDown Inertial Navigation System) subjected to roll and pitch motions of the ship. Specifically, to reduce alignment errors induced by measurement time-delay and ship body flexure, an error compensation method is suggested based on delay state augmentation and DCM(Direction Cosine Matrix) partial matching. A linearized error model for the velocity and attitude matching transfer alignment system is first derived by linearizing the nonlinear measurement equation with respect to its time delay and augmenting the delay state into the conventional linear state equations. And then DCM partial matching is properly combined to reduce effects of a ship's Y axis flexure. The simulation results show that the suggested method is effective enough resulting in considerably less azimuth alignment errors.

  • PDF

Establishing a Practical Loco-Regional Transfer System for Patients with Acute Cardiac Chest Pain (급성 흉통 환자에 대한 권역 내 이송 체계 구축)

  • Jang-Whan Bae
    • The Korean Journal of Medicine
    • /
    • v.99 no.2
    • /
    • pp.57-60
    • /
    • 2024
  • Cardiac disease is the second leading cause of mortality in Korea and the main cardiac disease is acute myocardial infarction (MI). Timely primary coronary intervention is the main treatment for acute MI and delay from symptom onset to intervention is the most important determinant of the prognosis and incidence of ischemic cardiomyopathy after acute MI. Treatment delay includes patient delay and system delay. The latter includes transfer and in-hospital delays. In-hospital delay improved greatly after introducing the critical pathway to Korea. However, there is still much room to improve patient and transfer delay.

Effects of Flame Transfer Function on Modeling Results of Combustion Instabilities in a 3 Step Duct System (3단 덕트 시스템에서 화염전달함수가 연소불안정 모델링 결과에 미치는 영향)

  • Hong, Sumin;Kim, Daesik
    • Journal of ILASS-Korea
    • /
    • v.25 no.3
    • /
    • pp.119-125
    • /
    • 2020
  • In this paper, we used Helmholtz solver based on 3D finite element method to quantitatively analyze the effects of change of gain, time delay and time delay spread, which are the main variables of flame transfer function, on combustion instability in gas turbine combustor. The effects of the variable of flame transfer function on the frequency and growth rate, which are the main results of combustion instability, were analyzed by applying the conventional heat release fluctuation model and modified one considering the time spread. The analysis results showed that the change of gain and time delay in the same resonance mode affected the frequency of the given resonance modes as well as growth rate of the feedback instability, however, the effect of time delay spread was not relatively remarkable, compared with the dominant effect of time delay.

Transfer Alignment with Adaptive Filter Estimating Time Delay (시간지연 추정 적응필터 적용 전달정렬 기법)

  • Park, Chan-Ju;Yu, Myeong-Jong;Lee, Sang-Jeong
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.36 no.11
    • /
    • pp.1079-1086
    • /
    • 2008
  • During transfer alignment navigation information transferred MINS(master inertial navigation system) to SINS(slave inertial navigation system) has a changed time delay. The changed time delay degrades the performance of transfer alignment. This paper proposes an adaptive filter that estimates covariance of a time delay in real-time using residual of measurements. The performance of the adaptive filter is compared with that of the EKF(extended Kalman filter) in case of transfer alignment for vertical launcher in the ship. The results show that proposed method is more effective than EKF in estimating attitude errors.

A Study Comparing the Effects of Types of Relative Frequency and Delay Internal of Knowledge of Results on Motor Learning (결과에 대한 지식의 상대적 빈도와 지연간격 유형이 운동학습에 미치는 영향 비교)

  • Kim, Dae-Gyun;Cha, Seung-Kyu;Kim, Bum-Gyu;An, Soo-Kyung;Kim, Jong-Man
    • Physical Therapy Korea
    • /
    • v.4 no.1
    • /
    • pp.48-62
    • /
    • 1997
  • Several studies have evaluated the effects of types of relative frequency and delay interval of knowledge of results(KR) on motor skill learning independently. The purpose of this study was to determine more effective types of KR relative frequency and KR delay interval for motor learning. Forty-six healthy subjects (15 female, 31 male) with no previous experience with this experiment participated. The subjects ranged in age from 20 to 29 years (mean=23.9, SD=0.474). All subjects were assigned to one of four groups: a high-instant group, a high-delay group, a low-instant group, and a low-delay group. During the acquisition phase, subjects practiced movements to a target (400 mm) with either a high (83%) or low (33%) KR relative frequency, and with either an instantaneous or delayed (after 8s) KR. Four groups were evaluated on retention (after 3min and 24hr) and transfer (450 mm) tests. The major findings were as follows: (1) there were no between-group differences in acquisition and short-term retention (p>0.05, (2) a low (33%) KR relative frequency during practice was as effective for learning as measured by both long-tenn retention and transfer tests, compared with high (83%) KR practice conditions (p<0.05), (3) delayed (8s) KR enhanced learning as measured by both long-term retention and transfer tests, compared with instantaneous KR practice conditions (p<0.05), and (4) there were no interactions between KR relative frequency and KR delay interval during acquisition, retention, and transfer phases. The results suggest that relatively less frequent and delayed KR are more effective types for motor learning than more frequent and instantaneous KR.

  • PDF

Construction of a robust tracking system with N-th sampling delay

  • Inooka, Hikaru;Ichirou, Komatsu Ken
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2001.10a
    • /
    • pp.87.5-87
    • /
    • 2001
  • In the past, we presented the tracking system with one sampling delay. In this paper, first we propose a tracking system with N-th sampling delay, in the case where an input-output pulse transfer function of a plant Z$\_$-N/. Secondly we propose a system configuration converting an input-output pulse transfer function of a plant into Z$\_$-N/ with the inverse system of the plant. Moreover, the proposed tracking system configuration is applied to an actual Ball and Beam system and good results are obtained.

  • PDF

Comparison of Time Offsets by Tropospheric Zenith Path delay models and Mapping Functions in GPS Time Transfer (GPS 시각 전송에서의 대류층 천정지연 모델과 매핑 함수에 따른 시각오프셋 비교)

  • Yu, Dong-Hui
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.18 no.6
    • /
    • pp.1317-1322
    • /
    • 2014
  • This paper shows effects of tropospheric delay models and mapping functions among delay features occurred when GPS code signal is transferred for GPS Time Transfer. GPS time transfer uses CGGTTS as the international standard format. For geodetic GPS receiver, ROB has provided r2cggtts software which generates CGGTTS data from RINEX data and all laboratories participated in TAI link use this software and send the CGGTTS results periodically. Though Saastamoinen zenith path model and Niell mapping function are commonly used in space geodesy, r2cggtts software applied NATO zenith path model and CHAO mapping function to the tropospheric delay model. Hence, this paper shows effects of two tropospheric delay models by implementing Saastamoinen model and Niell mapping function for the time offset.