• 제목/요약/키워드: Transdermal drug delivery systems

검색결과 13건 처리시간 0.026초

Fibric acid를 이용한 항고지혈증 겔 연고의 경피 흡수 특성 (Percutaneous absorption Characteristics of Anti hyperlipidemia Gel Ointment using Fibric acid)

  • 정덕채;황성규;오세영
    • 한국응용과학기술학회지
    • /
    • 제27권4호
    • /
    • pp.407-414
    • /
    • 2010
  • New biological treatments were being developed at a record place, but their potential could be compromised by a significant obstacle: the delivery of these drugs into a body. Pharmaceutical delivery is now nearly as important as product. New systems are being developed, and Drug Delivery Markets Series cover these new systems. Transdermal Delivery System(TDS) is often used as a method of drug dosage into the epidermic skin. An approach used to delivery drugs through the skin for therapeutic use as an alternative to oral, intravascular, subcutaneous and transmucosal routes. Various transdermal drug delivery technologies are described including the use of suitable formulations, carriers and penetration enhancers. The most commonly used transdermal system is the skin patch using various types of technologies. Compared with other methods of dosage, it is possible to use for a long term. It is also possible to stop the drug dosage are stopped if the drug dosage lead to side effect. Polysaccharides, such as karaya gum and glucomannan, were selected as base materials of TDS. Also, these polymers were characterized in terms of enhancers, drug contents. Among these polysaccharide, the permeation rate of karaya gum matrix was fastest in fibric acid(ciprofibrate) such as lipophilic drug in vitro. We used glycerin, PEG400 and PEG800 as enhancers. Since dermis has more water content(hydration) than the stratum corneum, skin permeation rate at steady state was highly influenced when PEG400 was more effective for lipophilic drug. Proper selection of the polymeric materials which resemble and enhance properties of the delivering drug was found to be important in controlling the skin permeation rate. Especially, this result suggests a possible use of polysaccharide gel ointment matrix as a transdermal delivery system of anti-hyperlipoproteinemic agent.

초음파를 이용한 경피약물수송의 촉진 (Enhancement of Transdermal Drug Delivery Using Ultrasound)

  • 박승규;김태열
    • The Journal of Korean Physical Therapy
    • /
    • 제13권3호
    • /
    • pp.719-726
    • /
    • 2001
  • Transdermal drug delivery offers various advantages over conventional drug delivery systems, such as avoidance gastrointestinal degradation and hepatic first-pass effect. encourages patient compliance. and possible sustained release of drugs. However, transdermal transport of drugs is low permeability of the stratum corneum, the superficial layer of the skin. Many physicochemical and biological factors influencing transdermal transport is described together with the corresponding experimental and clinical results. Phonophoresis is medical treatment with drugs introduced into the skin by ultrasound energy. Enhanced drug penetration is through to result from the biophysical alterations of skin structure by ultrasound waves. The frequency used for phonophoresis is usually from 20 kHz to 15MHz. Phonophoresis can be categorized in to three ranges: low-frequency range(below 1 MHz). therapeutic frequency range(1 to 3MHz), and high-frequency range(above 3 MHz). The depth of penetration of ultrasound into skin is inversely proportional to the frequency. Cavitation may cause mechanical stress. temperature elevation, or enhanced chemical reactivity causing drug transport. One theory is that ultrasound affects the permeation of the stratum corneum lipid structure as the limiting step in permeating through the skin. The range of indications for phonophoresis is wide. Aspecific classification of the range of indications is obtained by classification of pathological conditions. The continuous research is needed for many interesting issucs of phonophoretic transdermal delivory in new future.

  • PDF

클렌부테롤 경피흡수제제의 개발 (Development of Transdermal Delivery Systems Containing Clenbuterol)

  • 최한곤;권기철;정시영;이종달;용철순
    • Journal of Pharmaceutical Investigation
    • /
    • 제30권4호
    • /
    • pp.247-252
    • /
    • 2000
  • The advantages of transdermal administration are avoiding hepatic first pass effect, minimizing inter- and intra-patient variation, maintaining steady-state plasma level to provide long-term therapy from a single dose, and allowing a rapid termination of drug input. Clenbuterol, a selective ${\beta}_2-adrenergic$ receptor stimulant, has been introduced as a potent bronchodilator for patients with bronchial asthma, chronic obstructive bronchial disease. For the development of transdermal systems containing clenbuterol, two limiting factors - long lag time and low flux - must be overcome. In this study, we attempted to select optimal formulation for preparation of clenbuterol patch using hairless mouse skin and flow-through diffusion cell. The flux of clenbuterol increased as the percent of clenbuterol dose dependently in the concentration range of 5-15%. Based on this result, we fixed the concentration of clenbuterol as 15%. The effect of various penetration enhancers on percutaneous absorption of clenbuterol through hairless mouse skin was investigated. Labrafil was the most effective enhancer, which increased the permeability of clenbuterol approximately 4-fold compared with the control without penetration enhancer. Optimal enhancer concentration was 3%. The effect of various adhesives on penetration of clenbuterol was also investigated. Among the adhesives studied, MA-31 was the most effective adhesive. Furthermore, the clenbuterol patch composed of 15% clenbuterol, 3% Labrafil and 82% MA-31, which gave most excellent penetration of drug in in vitro penetration study, maintained therapeutic plasma levels in in vivo study using S.D. rats. These studies demonstrated a good feasibility of clenbuterol administration through the intact skin using a transdermal patch, and show a possibility of the development of clenbuterol patches.

  • PDF

Evaluation of Physico-chemical Properties of Acrylic Resin Hydrogel and their Application to Transdermal Delivery System

  • Chung, Uoo-Tae;Choi, Seung-Man;Kang, Kee-Long;Kim, Nak-Seo;Chung, Youn-Bok
    • Archives of Pharmacal Research
    • /
    • 제18권4호
    • /
    • pp.224-230
    • /
    • 1995
  • Recently, many attempts have been made to use hydrogels of various polymers as delivery systems of various drugs and bioactive materials to prolong and control their phamacological activities. In this study, we have evaluated the physico-chemical properties of methacrylic acid-methyacrylic acid methyl ester copolymer 9Eudispert mv)m a acrylic resin hydorgel, and its application to transdermal delivery system. In the dissolution tests, the release rate of salicylic acid (SA) and sodium salicylate (SOd. SA) were faster than lidocain (LD) and lidocain-HCl(LD-HCl). As the concentration of Eudispert mv polymer increased, the extensibility of Eudispert mu hydrogel decreased, whereas the swelling ratio increased. The more NaOH and polymer concentration increased, the more osmotic pressure linearly increased. The skin permeation of Sod. SA, an acidic model drug, was remarkably enhanced by Eudispert mv hydrogel. All fatty acids, except for Sod. glycolate, dramatically increased the skin permeation flux in Eudispert mu hydrogel containing LD-Hcl, a basic model drug. Consequently, it is suggested that Eudispert mv hydrogel may be used as potential transdermal delivery vehicle.

  • PDF

A Numerical Study of the Performance of a Contoured Shock Tube for Needle-free Drug Delivery

  • Rasel, Md. Alim Iftekhar;Kim, Heuy Dong
    • 한국가시화정보학회지
    • /
    • 제10권2호
    • /
    • pp.32-38
    • /
    • 2012
  • In recent years a unique drug delivery system named as the transdermal drug delivery system has been developed which can deliver drug particles to the human skin without using any external needle. The solid drug particles are accelerated by means of high speed gas flow through a shock tube imparting enough momentum so that particles can penetrate through the outer layer of the skin. Different systems have been tried and tested in order to make it more convenient for clinical use. One of them is the contoured shock tube system (CST). The contoured shock tube consists of a classical shock tube connected with a correctly expanded supersonic nozzle. A set of bursting membrane are placed upstream of the nozzle section which retains the drug particle as well as initiates the gas flow (act as a diaphragm in a shock tube). The key feature of the CST system is it can deliver particles with a controllable velocity and spatial distribution. The flow dynamics of the contoured shock tube is analyzed numerically using computational fluid dynamics (CFD). To validate the numerical approach pressure histories in different sections on the CST are compared with the experimental results. The key features of the flow field have been studied and analyzed in details. To investigate the performance of the CST system flow behavior through the shock tube under different operating conditions are also observed.

경피흡수촉진제의 영향에 따른 인다파마이드의 피부투과 (The Effect of Enhancer on the Penetration of Indapamide through Hairless Mouse Skin)

  • 서희;정상영;박지선;신병철;황성주;조선행
    • Journal of Pharmaceutical Investigation
    • /
    • 제37권4호
    • /
    • pp.237-242
    • /
    • 2007
  • The chemical formula of indapamide is 3-(aminosulfonyl)-4-chloro-N-(2,3-dihydro-2-methyl-1H-indol-l-yl)-benzamide, Indapamide is an oral antipertensive diuretic agent indicated for the treatment of hypertensive and edema. Indapamide inhibits carbonic anhydrase enzyme. Transdermal drug delivery systems, as compared to their corresponding classical oral or injectable dosage form counterparts, offer many advantages. The most important advantages are improved systemic bioavailability of the pharmaceutical active ingredients (PAI), because the first-pass metabolism by the liver and digestive system are avoided; and the controlled, constant drug delivery profile (that is, controlled zero-order absorption). Also of importance is the reduced dose frequency compared to the conventional oral dosage forms (that is, once-a-day, twice-a-week or once-a-week). Other benefits include longer duration of therapeutic action from a single application, and reversible action. For example, patches can be removed to reverse any adverse effects that may be caused by overdosing. In order to evaluate the effects of vehicles and penetration enhancers on skin permeation of Indapamide, the skin permeation rates of Indapamide from vehicles of different composition were determined using Franz cells fitted with excised hairless skins. Solubility of Indapamide in various solvents was investigated to select a vehicle suitable for the percutaneous absorption of Indapamide, The solvents used were Tween80, Tween20, Labrasol, Lauroglycol90 (LG90) and Peceol. Lauroglycol90 increase the permeability of indapamide approximately 3.75-fold compared with the control. Tween80, Tween20, Labrasol, Lauroglycol90 (LG90) and Peceol showed flux of $0.06ug/cm^2/hr,\;0.4ug/cm^2/hr,\;0.21ug/cm^2/hr,\;0.72ug/cm^2/hr,\;0.29ug/cm^2/hr$, respectively.

다양한 비스테로이드성 소염진통제의 쥐 피부 투과 (In vitro Rat Skin Permeation of Various NSAIDs)

  • 김민정;도희정;조원제;용철순;최한곤;이치호;김대덕
    • Journal of Pharmaceutical Investigation
    • /
    • 제32권4호
    • /
    • pp.313-319
    • /
    • 2002
  • Rat skin permeation of various nonsteroidal antiinflammatory drugs (NSAIDs) was investigated in vitro using Franz diffusion cell at $37^{\circ}C$. The effect of various skin permeation enhancers was also observed as a preliminary study of developing transdermal delivery systems of NSAIDs. Lipophilicity of NSAIDs was determined from thε partition coefficient (log P) in 1-octanol/water and 1-octanol/IPB mutual-saturated solutions. The solubility was determined in water, isotonic phosphate buffer (IPB), and propylene glycol (PG) at $37^{\circ}C$. The rat skin permeation rate of acetaminophen, piroxicam, and aceclofenac was almost negligible, although they were saturated in PG. Addition of 1 % permeation enhancer increased the permeation rate of ketoprofen, ketorolac, and diclofenac. However, the skin permeation rate of ibuprofen did not increase with the addition of various enhancers. Among the permeation enhancers testεd, oleic acid was the most effective for various NSAIDs. Based on the daily dose, lipophilicity, and the skin permeation ratε achieved in this study, ketoprofen and ketorolac seem to be the most promising drug candidates for transdermal delivery systems, especially when formulated with unsaturated fatty acids, such as oleic acid.

록소프로펜 플라스터의 제제설계 및 평가 (Formulation and Evaluation of Loxoprofen Plasters)

  • 김태성;전인구
    • Biomolecules & Therapeutics
    • /
    • 제9권4호
    • /
    • pp.298-306
    • /
    • 2001
  • To develop a novel transdermal delivery system of loxoprofen (LP), a potent antiinflammatory and analgesic agent, the effects of vehicle composition and drug loading dose on the skin permeation property were investigated. And in vivo skin absorption property studied by analysing the $C_{max}$ and AUC was investigated after applying the developed plaster systems on rabbit back skin. Addition of isopropyl myristate (IPM) and IPM-diethylene glycol monoethyl ether (DGME) cosolvent in the plaster showed higher permeation rates than those from propylene glycol laurate-DGME cosolvent systems. As the concentration of LP in the plaster increased from 0.56 mg/$\textrm{cm}^2$ to 1.19 mg/$\textrm{cm}^2$, the drug release and skin permeation rates increased linearly. At loading dose of 1.19 mg/$\textrm{cm}^2$, the flux reached 35.6 $\mu$g/$\textrm{cm}^2$/hr. New LP plasters showed a good adhesive property onto skin, and showed no crystal formation. The AU $C_{0-24hr}$ and $C_{max}$ after dermal application of LP plaster (60 mg/70 $\textrm{cm}^2$) were found to be 6951$\pm$230 ng.hr/ml and 400$\pm$44 ng/ml, respectively. And the plasma concentration maintained above 300 ng/ml up to 24 hr period. In the carrageenan-induced rat paw edema test, LP plaster showed similar inhibition rate with marketed ketoprofen (Ketoto $p^{R}$) plaster.aster.r.

  • PDF

The Effect of Enhancers on the Penetration of Albuterol through Hairless Mouse Skin

  • Choi, Han-Gon;Rhee, Jong-Dal;Yu, Bong-Kyu;Kim, Jung-Ae;Kwak, Mi-Kyung;Woo, Jong-Soo;Oh, Dong-Hun;Han, Myo-Jung;Choi, Jun-Young;Piao, Mingguan;Yong, Chul-Soon
    • Journal of Pharmaceutical Investigation
    • /
    • 제36권5호
    • /
    • pp.321-329
    • /
    • 2006
  • Albuterol, a selective ${\beta}_2$-adrenergic receptor stimulant, has been introduced as a potent bronchodilator for patients with bronchial asthma, chronic obstructive bronchial disease, chronic bronchitis and pulmonary emphysema. The percutaneous permeation of albuterol sulfate was investigated in hairless mouse skin in vitro with and without pretreatment with enhancers. The enhancing effects of ethanol and various penetration enhancers such as terpenes, non-ionic surfactants, pyrrolidones, and fatty acids on the permeation of albuterol sulfate were evaluated using Franz diffusion cells. Among terpenes studied, 1,8-cineole was the most effective enhancer, which increased the permeability of albuterol sulfate approximately 33-fold compared with the control without enhancer pretrement, followed by d-limonene with enhancement ratio of 21.79. 2-Pyrrolidone-5-carboxylic acid increased the permeability of albuterol sulfate approximately 5.5-fold compared with the control. Other pyrrolidones tested showed only slight permeability enhancing effect with enhancement ratio less than 2.8. Nonionic surfactants showed moderate enhancing effects. Lauric acid increased the permeability of albuterol sulfate approximately 30-fold with decreasing the lag time from 2.85 to 0.64 hr. Oleic acid and linoleic acid showed enhancement ratio of 24.55 and 22.91, respectively. These findings would allow a more rational approach for designing formulations for the transdermal delivery of albuterol sulfate and similar drugs.

초음속 마이크로 제트 유동에 관한 기초적 연구 (A Fundamental Study of the Supersonic Microjet)

  • 정미선;김현섭;김희동
    • 대한기계학회:학술대회논문집
    • /
    • 대한기계학회 2001년도 추계학술대회논문집B
    • /
    • pp.622-627
    • /
    • 2001
  • Microjet flows are often encountered in many industrial applications of micro-electro-mechanical systems as well as in medical engineering fields such as a transdermal drug delivery system for needle-free injection of drugs into the skin. The Reynolds numbers of such microjets are usually several orders of magnitude below those of larger-scale jets. The supersonic microjet physics with these low Reynolds numbers are not yet understood to date. Computational modeling and simulation can provide an effective predictive capability for the major features of the supersonic microjets. In the present study, computations using the axisymmetic, compressible, Navier-Stokes equations are applied to understand the supersonic microjet flow physics. The pressure ratio of the microjets is changed to obtain both the under- and over-expanded flows at the exit of the micronozzle. Sonic and supersonic microjets are simulated and compared with some experimental results available. Based on computational results, two microjets are discussed in terms of total pressure, jet decay and supersonic core length.

  • PDF