• Title/Summary/Keyword: Transcutaneous device

Search Result 20, Processing Time 0.027 seconds

Iatrogenic Spark Burn Injury to the Chest From a Transcutaneous Pacing Patch (경피적 심장 충격 장치의 사용으로 발생한 의인성 전기 화상의 증례 보고)

  • Choi, Jong Yun;Cha, Won Jin;Jung, Ee Room;Seo, Bommie Florence;Jung, Sung-No
    • Journal of the Korean Burn Society
    • /
    • v.24 no.2
    • /
    • pp.50-52
    • /
    • 2021
  • Iatrogenic electrical burns that occur from the use of a defibrillator, a paddle-type cardiac shock device, have been reported in various forms. Electrical burns are usually conducted directly through the skin and are more damaging than scald burns or contact burns. A transcutaneous cardiac pacing device is a patch-type cardiac shock device that automatically delivers a shock when an abnormal heart rhythm is detected. We introduce a unique case of iatrogenic electrical burns caused by the transcutaneous pacing patch of a cardiac shock device. Electrical energy was converted into a spark due to foreign bodies deposited around the patch, resulting in damage to the peripheral area of the skin.

Implementation of a Transcutaneous Power Transmission System for Implantable Medical Devices by Resonant Frequency Tracking Method (주파수 추적 방식에 의한 이식형 의료기기용 무선전력전달 장치 구현)

  • Lim, H.G.;Lee, J.W.;Kim, D.W.;Lee, J.H.;Seong, K.W.;Kim, M.N.;Cho, J.H.
    • Journal of Biomedical Engineering Research
    • /
    • v.31 no.5
    • /
    • pp.401-406
    • /
    • 2010
  • Recently, many implantable medical devices have been developed and manufactured in many countries. In these devices, generally, energy is supplied by a transcutaneous method to avoid the skin penetration due to the power wires. As the most transcutaneous power transmission methods, the electromagnetic coupling between two coils and resonance at a specific frequency has been used widely. However, in case of a transcutaneous power transmitter with a fixed switching frequency to drive an electromagnetic coil, inefficient power transmission and thermal damage by the undesirable current variation may occur, because the electromagnetic coupling state between a primary coil and a secondary coil is very sensitive to skin thickness of each applied position and by person. In order to overcome these defects, a transcutaneous power transmitter of which operating frequency can be automatically tracked into the resonance frequency at each environment has been designed and implemented. Through the results of experiments for different coil surroundings, we have been demonstrated that the implemented transcutaneous power transmitter can track automatically into a varied resonance frequency according to arbitrary skin thickness change.

Coil-Capacitor Circuit Design of a Transcutaneous Energy Transmission System to Deliver Stable Electric Power

  • Choi, Seong-Wook;Lee, Min-Hyong
    • ETRI Journal
    • /
    • v.30 no.6
    • /
    • pp.844-849
    • /
    • 2008
  • A new transcutaneous energy transmission (TET) system was developed for transmitting electrical power to an implanted device, such as an artificial heart in a patient's body. This new design can maintain a stable output voltage independent of the load resistance. The system includes a compensation capacitor to reduce energy loss and increase power transfer efficiency. Experimental results show that the output voltage of the receiving coil changes very little as the load resistance varies from 14.8 ${\Omega}$ to 15 $k{\Omega}$, which corresponds to a change in output power from 0.1 to 97 W.

  • PDF

Development of Transcutaneous Energy Transmission System for Implantable Devices (생체 이식형 무선에너지 전송 시스템 개발)

  • Yoo Dong-Soo;Lee Joon-Ha;Seo Hee-Don;Lee Sang-Hag
    • Progress in Medical Physics
    • /
    • v.16 no.3
    • /
    • pp.155-159
    • /
    • 2005
  • As a part of implantable device in body, a transcutaneous energy transmission system has been developed. It would be desirable to tansfer electrical energy to implantable devices transcutaneously. The distance between transcutaneous transformer windings are approximately equal to the thickness of the human's skin, nominally between 10$\~$20 mm. Class-E resonant amplifier is used to drive a primary coil for high efficiency. Maximum current is above 50 mA at any frequency. The developed system shows that the circuit operates correctly at each frequency; 500 kHz, 1 MHz and 4 MHz.

  • PDF

Non-invasive Transcutaneous pCO2 Gas Monitoring System for Arterial Blood Gas Analysis

  • Bang, Hyang-Yi;Kang, Byoung-Ho;Eum, Nyeon-Sik;Kang, Shin-Won
    • Journal of Sensor Science and Technology
    • /
    • v.20 no.5
    • /
    • pp.311-316
    • /
    • 2011
  • Monitoring the carbon dioxide concentration in arterial blood is vital for the evaluation and prevention of pulmonary disease. Yet, domestic pure arterial blood carbon dioxide sensor technologies are not being developed, instead all sensors are imported. In this paper, we develop a real time monitoring system for arterial blood partial pressure of carbon dioxide($pCO_2$) gas from the wrist by using a carbon micro-heater. The micro-heater was fabricated with a thickness of 0.3 ${\mu}m$ in order to collect the carbon dioxide under the skin. The micro-heater has been designed to perform temperature compensation in order to prevent damage to the skin. Two clinical trials of the system were undertaken. As a result, we demonstrated that a portable, transcutaneous carbon dioxide analysis($TcpCO_2$) device produced domestically is possible. In addition, this system reduced the analysis time significantly. Carbon films could reduce the unit price of these sensors by replacing the gold film used in foreign models. Also, we developed a real time monitoring system which can be used with optical biosensors for medical diagnostics as well as gas sensors for environmental monitoring.

Transcutaneous Electrical Nerve Stimulation System for Treating Tinnitus based on the Cortex-M4 Microcontroller

  • Lee, Jaeung;Yeom, Hojun
    • International journal of advanced smart convergence
    • /
    • v.5 no.4
    • /
    • pp.10-14
    • /
    • 2016
  • Among the methods of treating tinnitus, the transcutaneous clectrical nerve stimulation (TENS) method of treating by electrical stimulation is common. However, there is a problem that surgical operation is required to stimulate the vagus nerve (VN) main trunk near most of the bronchus. Alternatively, we found that the same effect could be achieved by electrically stimulating the vagus nerve VN branch (Arnold's nerve) distributed in the outer ear. The TENS system for stimulation of vagus nerve has been developed, but it has not been able to implement to stimulate as a parameter optimized for the patient by simultaneously playing the sound of eliminating the tinnitus frequency. Therefore, in this paper, it is important to develop a safe and practical TENS device for tinnitus treatment based on a 32-bit microprocessor that simultaneously applies non-invasive and notched sounds and to develop optimal treatment methods for treating tinnitus.

The Design of an Infrared Transcutaneous Control Unit for Totally Implantable Middle Ear System (완전 이식형 인공중이를 위한 체외 및 체내 제어시스템 구현)

  • 정의성;강호경;박일용;윤영호;김민규;송병섭;원철호;조진호
    • Journal of the Institute of Electronics Engineers of Korea SC
    • /
    • v.41 no.5
    • /
    • pp.71-78
    • /
    • 2004
  • An infrared remote control-type transcutaneous control device using a $\mu$-processor is design for the totally implantable middle ear system. An infrared light transmission model for the tissue of skin was introduced and then a radiant intensity and the required current of the infrared light emitting diode(IR LED) driving circuit at transmission part were calculated for the external control device. And the transmission part generates IR signal by the system's own data protocol which prevents interferences from other infrared remote controls of the household appliances. The control part of the implanted device was designed to analyze functions of the received infrared(IR) signal that indicate the power ON/OFF and volume UP/DOWN. After the system is implemented, a data transmission experiments using 4 mm thickness of porcine skin were carried out. From the experiment, it was verified that the infrared control signal was transmitted to receiving module of the implemented system without any error.

R & D of Smartwear Built-In TENS Device for Relief of Dysmenorrhea (생리통 완화를 위한 저주파 치료기(TENS) 내장 스마트 의복 개발 연구)

  • Lee, Won-Joon;Um, So-Hee
    • The Research Journal of the Costume Culture
    • /
    • v.17 no.2
    • /
    • pp.320-329
    • /
    • 2009
  • This research attempts to develop a method to relieve dysmenorrhea, which is an obstacle to many women's social activities, by designing a smartwear with built-in thermotherapy and TENS device. TENS therapy has the advantages of being controlled by patients and not depending on the use of drugs. The TENS device is designed as a stomach band so as to be unnoticeable to others when outer clothes are worn; the size was minimized and attached to underwear to facilitate use everywhere at any time. A current problem is the limitation of minimizing, but as battery technology is further developed, we can anticipate much smaller devices. The development of aforementioned smartwear function will increase women's choices in occupations and general improvement in quality of life.

  • PDF

Development of a Transcutaneous Optical Information Transmission System for Total Artificial Heart Using Near Infrared Laser

  • Lee, Jung-Hoon;Kim, Wook-Eun;Choi, Jong-Hoon;Ahn, Jae-Mok;Min, Byoung-Goo
    • Proceedings of the KOSOMBE Conference
    • /
    • v.1997 no.05
    • /
    • pp.64-67
    • /
    • 1997
  • In the total artificial heart(TAH), a transcutaneous information transmission system(TITS) is vely important to monitor the TAH status and detect the device failure, and repair the possible problems. First of all, the communication channel(skin) and method were simulated in terms of transmittance, scattering, reflection and absorption, then the system was designed with size reduction including low power consumption and reliability compared to the previous one. The informations are transmitted through the skin(approximately 1cm in depth) by frequency modulated near infrared(NIR) pulses using 780nm laser diodes as transmitters and photodiode as receiver with high speed and high spectral sensitivity. The logic high and low frequencies are 3MHz, 1MHz respectively. The system is a bidirectional data link for more than 38.4Kbps data rate, full-duplex with a bit error rate of less than $10^{-5}$.

  • PDF