• Title/Summary/Keyword: Transcriptional Regulation

Search Result 633, Processing Time 0.032 seconds

CREB and FoxO1: two transcription factors for the regulation of hepatic gluconeogenesis

  • Oh, Kyoung-Jin;Han, Hye-Sook;Kim, Min-Jung;Koo, Seung-Hoi
    • BMB Reports
    • /
    • v.46 no.12
    • /
    • pp.567-574
    • /
    • 2013
  • Liver plays a major role in maintaining glucose homeostasis in mammals. Under fasting conditions, hepatic glucose production is critical as a source of fuel to maintain the basic functions in other tissues, including skeletal muscle, red blood cells, and the brain. Fasting hormones glucagon and cortisol play major roles during the process, in part by activating the transcription of key enzyme genes in the gluconeogenesis such as phosphoenol pyruvate carboxykinase (PEPCK) and glucose 6 phosphatase catalytic subunit (G6Pase). Conversely, gluconeogenic transcription is repressed by pancreatic insulin under feeding conditions, which effectively inhibits transcriptional activator complexes by either promoting post-translational modifications or activating transcriptional inhibitors in the liver, resulting in the reduction of hepatic glucose output. The transcriptional regulatory machineries have been highlighted as targets for type 2 diabetes drugs to control glycemia, so understanding of the complex regulatory mechanisms for transcription circuits for hepatic gluconeogenesis is critical in the potential development of therapeutic tools for the treatment of this disease. In this review, the current understanding regarding the roles of two key transcriptional activators, CREB and FoxO1, in the regulation of hepatic gluconeogenic program is discussed.

Transcriptional Regulation of the Glial Cell-Specific JC Virus by p53

  • Kim, Hee-Sun;Woo, Moom-Sook
    • Archives of Pharmacal Research
    • /
    • v.25 no.2
    • /
    • pp.208-213
    • /
    • 2002
  • The human polyomavirus JC virus is the etiologic agent of progressive multifocal leukoencephalopathy (PML). As the JC virus early promoter directs cell-specific expression of the viral replication factor large T antigen, transcriptional regulation constitutes a major mechanism of glial tropism in PML. It has been demonstrated that SV4O or JC virus large T antigen interacts with p53 protein and regulates many viral and cellular genes. In this study we founts that p53 represses the JC virus early promoter in both glial and nonglial cells To identify the cis-regulatory elements responsible for p53-mediated repression, deletional and site-directed mutational analyses were performed . Deletion of the enhancer region diminished p53-mediated transcriptional repression. However, point mutations of several transcription factor binding sites in the basal promoter region did not produce any significant changes. In support of this observation, when the enhancer was fused to a heterologous promoter, p53 red reduced the promoter activity about three fold. These results indicate that the enhancer region is important for tole repression of JC virus transcription by p53. Furthermore, coexpression of JC virus T antigen with a p53 protein abolished p53-mediated repression of the JC virus early promoter in non-glial cells, but not in glial cells. This finding suggests that T antigen interacts with p53 and regulates JC virus transcription in a cell-specific manner.

Growth retardation and differential regulation of expansin genes in chilling-stressed sweetpotato

  • Noh, Seol Ah;Park, Sun Hee;Huh, Gyung Hye;Paek, Kyung-Hee;Shin, Jeong Sheop;Bae, Jung Myung
    • Plant Biotechnology Reports
    • /
    • v.3 no.1
    • /
    • pp.75-85
    • /
    • 2009
  • We report here a first evaluation of chilling-responsive gene regulation in the sweetpotato. The growth of sweetpotato plants was severely retarded at $12^{\circ}C$; the lengths of the leaf, petiole, and root were markedly reduced and microscopic observation revealed that the elongation growth of the epidermal cells in each of these organs was significantly reduced. We examined the transcriptional regulation of three sweetpotato expansin genes (IbEXP1, IbEXP2 and IbEXPL1) in response to various chilling temperatures (12, 16, 22, and $28^{\circ}C$). In the leaf and petiole, the highest transcript levels were those of IbEXP1 at $28^{\circ}C$, whereas IbEXPL1 transcript levels were highest in the root. IbEXP1 mRNA levels in the $12^{\circ}C-treated$ petiole showed a fluctuating pattern (transient decrease-recovery-stable decrease) for 48 h. In the leaf and petiole, IbEXP1 and IbEXPL1 exhibited a similar response to chilling in that their mRNA levels decreased at $22^{\circ}C$, increased at $16^{\circ}C$, and decreased dramatically at $12^{\circ}C$. In contrast, mRNA levels of IbEXP2 in the leaf fell gradually as the temperature fell from 28 to $12^{\circ}C$, while they remained unaltered in the petiole. In the root, mRNA levels of IbEXPL1 and IbEXP1 reached maximum levels at $16^{\circ}C$, and decreased significantly at $12^{\circ}C$. These data demonstrated that expression of these three expansin genes was ultimately down-regulated at $12^{\circ}C$; however, transcriptional regulation of each expansin gene exhibited its own distinctive pattern in response to various chilling temperatures.

Transcriptional Regulation of the Gene Encoding ${\gamma}$-Glutamylcysteine Synthetase from the Fission Yeast Schizosaccharomyces pombe

  • Kim, Su-Jung;Kim, Hong-Gyum;Kim, Byung-Chul;Kim, Kyunghoon;Park, Eun-Hee;Lim, Chang-Jin
    • Journal of Microbiology
    • /
    • v.42 no.3
    • /
    • pp.233-238
    • /
    • 2004
  • Transcriptional regulation of the Schizosaccharomyces pombe y-glutamylcysteine synthetase (GCS) gene was examined using the two GCS-lacZ fusion plasmids pUGCS101 and pUGCS102, which harbor 607 bp and 447 bp upstream regions, respectively. The negatively-acting sequence was located in the -607 - -447 bp upstream region of the GCS gene. The upstream sequence responsible for induction by menadione(MD) and L-buthionine-(S, R)-sulfoximine (BSO) resides in the -607 - -447 bp region, whereas the sequence which codes for nitric oxide induction is located within the -447 bp region, measured from the translational initiation point. Carbon source-dependent regulation of the GCS gene appeared to be dependent on the nucleotide sequence within -447 bp region. The transcription factor Papl is involved in the induction of the GCS gene by MD and BSO, but not by nitric oxide. Induction of the GCS gene occurring due to low glucose concentration does not depend on the presence of Pap1. These data imply that induction by MD and BSO may be mediated by the Pap1 binding site, probably located in the -607 - -447 region, and also that the nitric oxide-mediated regulation of the S. pombe GCS gene may share a similar mechanism with its carbon-dependent induction.

Molecular Mechanism of Photic-Entrainment of Chicken Pineal Circadian Clock

  • Okano, Toshiyuki;Fukada, Yoshitaka
    • Journal of Photoscience
    • /
    • v.9 no.2
    • /
    • pp.25-28
    • /
    • 2002
  • The chicken pineal gland has been used for studies on the circadian clock, because it retains an intracellular phototransduction pathway regulating the phase of the intrinsic clock oscillator. Previously, we identified chicken clock genes expressed in the gland (cPer2, cPer3, cBmal1, cBmal2, cCry1, cCry2, and cClock), and showed that a cBMALl/2-cCLOCK heteromer acts as a regulator transactivating cPer2 gene through the CACGTG E-box element found in its promoter. Notably, mRNA expression of cPer2 gene is up-regulated by light as well as is driven by the circadian clock, implying that light-dependent clock resetting may involve the up-regulation of cPer2 gene. To explore the mechanism of light-dependent gene expression unidentified in animals, we first focused on pinopsin gene whose mRNA level is also up-regulated by light. A pinopsin promoter was isolated and analyzed by transcriptional assays using cultured chicken pineal cells, resulting in identification of an 18-bp light-responsive element that includes a CACGTG E-box sequence. We also investigated a role of mitogen-activated protein kinase (MAPK) in the clock resetting, especially in the E-box-dependent transcriptional regulation, because MAPK is phospholylated (activated) in a circadian manner and is rapidly dephosphorylated by light in the gland. Both pulldown analysis and kinase assay revealed that MAPK directly associates with BMAL1 to phosphorylate it at several Ser/Thr residues. Transcriptional analyses implied that the MAPK-mediated phosphorylation may negatively regulate the BMAL-CLOCK-dependent transactivation through the E-box. These results suggest that the CACGTG E-box serves not only as a clock-controlled element but also as a light-responsive element.

  • PDF

Valproic Acid Induces Transcriptional Activation of Human GD3 Synthase (hST8Sia I) in SK-N-BE(2)-C Human Neuroblastoma Cells

  • Kwon, Haw-Young;Dae, Hyun-Mi;Song, Na-Ri;Kim, Kyoung-Sook;Kim, Cheorl-Ho;Lee, Young-Choon
    • Molecules and Cells
    • /
    • v.27 no.1
    • /
    • pp.113-118
    • /
    • 2009
  • In this study, we have shown the transcriptional regulation of the human GD3 synthase (hST8Sia I) induced by valproic acid (VPA) in human neuroblastoma SK-N-BE(2)-C cells. To elucidate the mechanism underlying the regulation of hST8Sia I gene expression in VPA-stimulated SK-N-BE(2)-C cells, we characterized the promoter region of the hST8Sia I gene. Functional analysis of the 5'-flanking region of the hST8Sia I gene by the transient expression method showed that the -1146 to -646 region, which contains putative binding sites for transcription factors c-Ets-1, CREB, AP-1 and NF-${\kappa}B$, functions as the VPA-inducible promoter of hST8Sia I in SK-N-BE(2)-C cells. Site-directed mutagenesis and electrophoretic mobility shift assay indicated that the NF-${\kappa}B$ binding site at -731 to -722 was crucial for the VPA-induced expression of hST8Sia I in SK-N-BE(2)-C cells. In addition, the transcriptional activity of hST8Sia I induced by VPA in SK-N-BE(2)-C cells was strongly inhibited by SP600125, which is a c-Jun N-terminal kinase (JNK) inhibitor, and $G{\ddot{O}}6976$, which is a protein kinase C (PKC) inhibitor, as determined by RT-PCR (reverse transcription-polymerase chain reaction) and luciferase assays. These results suggest that VPA markedly modulated transcriptional regulation of hST8Sia I gene expression through PKC/JNK signal pathways in SK-N-BE(2)-C cells.

Dynamic Behavior of Regulatory Elements in the Hierarchical Regulatory Network of Various Carbon Sources-Grown Escherichia coli

  • Lee, Sung-Gun;Hwang, Kyu-Suk;Kim, Cheol-Min
    • Journal of Microbiology and Biotechnology
    • /
    • v.15 no.3
    • /
    • pp.551-559
    • /
    • 2005
  • The recent rapid increase in genomic data related to many microorganisms and the development of computational tools to accurately analyze large amounts of data have enabled us to design several kinds of simulation approaches for the complex behaviors of cells. Among these approaches, dFBA (dynamic flux balance analysis), which utilizes FBA, differential equations, and regulatory events, has correctly predicted cellular behaviors under given environmental conditions. However, until now, dFBA has centered on substrate concentration, cell growth, and gene on/off, but a detailed hierarchical structure of a regulatory network has not been taken into account. The use of Boolean rules for regulatory events in dFBA has limited the representation of interactions between specific regulatory proteins and genes and the whole transcriptional regulation mechanism with environmental change. In this paper, we adopted the operon as the basic structure, constructed a hierarchical structure for a regulatory network with defined fundamental symbols, and introduced a weight between symbols in order to solve the above problems. Finally, the total control mechanism of regulatory elements (operons, genes, effectors, etc.) with time was simulated through the linkage of dFBA with regulatory network modeling. The lac operon, trp operon, and tna operon in the central metabolic network of E. coli were chosen as the basic models for control patterns. The suggested modeling method in this study can be adopted as a basic framework to describe other transcriptional regulations, and provide biologists and engineers with useful information on transcriptional regulation mechanisms under extracellular environmental change.