• Title/Summary/Keyword: Transcription tool

Search Result 89, Processing Time 0.02 seconds

CosmoScriBe 2.0 : The development of Korean transcription tools (CosmoScriBe 2.0: 한국어 전사 도구의 개발)

  • Kwak, Sun-Dong;Chang, Moon-Soo
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.24 no.3
    • /
    • pp.323-329
    • /
    • 2014
  • In spoken language research, transcription process needs to be carried out to translate voice data into text. Transcription tool, support program of transcription, offers various information such as content and time of utterance and speaker information. For this reason, inexperienced computer users are having trouble familiarizing with the program. Moreover, since there are little transcription tools developed domestically in Korea, they are usually not suitable for Korean environment. In this paper, we propose a transcription tool which supports not only Korean transcription but easy-to-use interface environment for novice. The transcription supporting function is also provided to minimize mistake that might happen in the process of transcription. And a system structure will be provided for data reliability. Usability of the proposed tool is evaluated in accordance with transcription experience. The evaluation result shows that transcription process and transcription support function have become faster and more convenient respectively.

Enhancing the Solubility of Recombinant Akt1 in Escherichia coli with an Artificial Transcription Factor Library

  • Park Kyung-Soon;Lee Ho-Rim;Kim Jin-Soo
    • Journal of Microbiology and Biotechnology
    • /
    • v.16 no.2
    • /
    • pp.299-302
    • /
    • 2006
  • A combinatorial library of artificial transcription factors (ATFs) was introduced into the bacterial cells that expressed the Akt1-GFP fusion protein. By measuring the level of fluorescence generated by the transformed E. coli cells, we were able to obtain clones in which ATFs increased the solubility of the Akt1. Our results show that ATF library is a useful tool for increasing the solubility of selected recombinant proteins in E. coli.

One-Step Selection of Artificial Transcription Factors Using an In Vivo Screening System

  • Bae, Kwang-Hee;Kim, Jin-Soo
    • Molecules and Cells
    • /
    • v.21 no.3
    • /
    • pp.376-380
    • /
    • 2006
  • Gene expression is regulated in large part at the level of transcription under the control of sequence-specific transcriptional regulatory proteins. Therefore, the ability to affect gene expression at will using sequencespecific artificial transcription factors would provide researchers with a powerful tool for biotechnology research and drug discovery. Previously, we isolated 56 novel sequence-specific DNA-binding domains from the human genome by in vivo selection. We hypothesized that these domains might be more useful for regulating gene expression in higher eukaryotic cells than those selected in vitro using phage display. However, an unpredictable factor, termed the "context effect", is associated with the construction of novel zinc finger transcription factors--- DNA-binding proteins that bind specifically to 9-base pair target sequences. In this study, we directly selected active artificial zinc finger proteins from a zinc finger protein library. Direct in vivo selection of constituents of a zinc finger protein library may be an efficient method for isolating multi-finger DNA binding proteins while avoiding the context effect.

A Novel Approach to Investigating Protein/Protein Interactions and Their Functions by TAP-Tagged Yeast Strains and its Application to Examine Yeast Transcription Machinery

  • Jung, Jun-Ho;Ahn, Yeh-Jin;Kang, Lin-Woo
    • Journal of Microbiology and Biotechnology
    • /
    • v.18 no.4
    • /
    • pp.631-638
    • /
    • 2008
  • Tandem affinity purification (TAP) method combined with LC-MS/MS is the most accurate and reliable way to study the interaction of proteins or proteomics in a genome-wide scale. For the first time, we used a TAP-tag as a mutagenic tool to disrupt protein interactions at the specific site. Although lots of commonly used mutational tools exist to study functions of a gene, such as deletional mutations and site-directed mutagenesis, each method has its own demerit. To test the usefulness of a TAP-tag as a mutagenic tool, we applied a TAP-tag to RNA polymerase II, which is the key enzyme of gene expression and is controlled by hundreds of transcription factors even to transcribe a gene. Our experiment is based on the hypothesis that there will be interrupted interactions between Pol II and transcription factors owing to the TAP-tag attached at the C-terminus of each subunit of Pol II, and the abnormality caused by interrupted protein interactions can be observed by measuring a cell-cycle of each yeast strain. From ten different TAP-tagged strains, Rpb7- and Rpb12-TAP-tagged strains show severe defects in growth rate and morphology. Without a heterodimer of Rpb4/Rpb7, only the ten subunits Pol II can conduct transcription normally, and there is no previously known function of Rpb7. The observed defect of the Rpb7-TAP-tagged strain shows that Rpb7 forms a complex with other proteins or compounds and the interruption of the interaction can interfere with the normal cell cycle and morphology of the cell and nucleus. This is a novel attempt to use a TAP-tag as a proteomic tool to study protein interactions.

CONVIRT: A web-based tool for transcriptional regulatory site identification using a conserved virtual chromosome

  • Ryu, Tae-Woo;Lee, Se-Joon;Hur, Cheol-Goo;Lee, Do-Heon
    • BMB Reports
    • /
    • v.42 no.12
    • /
    • pp.823-828
    • /
    • 2009
  • Techniques for analyzing protein-DNA interactions on a genome-wide scale have recently established regulatory roles for distal enhancers. However, the large sizes of higher eukaryotic genomes have made identification of these elements difficult. Information regarding sequence conservation, exon annotation and repetitive regions can be used to reduce the size of the search region. However, previously developed resources are inadequate for consolidating such information. CONVIRT is a web resource for the identification of transcription factor binding sites and also features comparative genomics. Genomic information on ortholog-independent conserved regions, exons, repeats and sequences is integrated into the virtual chromosome, and statistically over-represented single or combinations of transcription factor binding sites are sought. CONVIRT provides regulatory network analysis for several organisms with long promoter regions and permits inter-species genome alignments. CONVIRT is freely available at http://biosoft.kaist.ac.kr/convirt.

Assay of Epoxide Hydrolase Activity Based on PCR-linked in vitro Coupled Transcription and Translation System. (무세포 단백질합성 시스템 기반의 epoxide hydrolase 발현 및 활성 분석)

  • Lee, Ok-Kyung;Kim, Hee-Sook;Lee, Eun-Yeol
    • Journal of Life Science
    • /
    • v.15 no.5 s.72
    • /
    • pp.779-782
    • /
    • 2005
  • Cell-free expression is a powerful tool for rapid protein analysis, enabling an efficient identification of gene without cumbersome procedure of transformation and cell culture. Epoxide hydrolase (EH) gene of Rhodotorula glutinis was simply amplified by PCR, and the resultant gene was expressed in vitro using a coupled Transcription/translation system. The cell-free expressed EH protein mixture exhibited the enantioselective hydrolysis activity toward (R)-styrene oxide, representing that cell-free protein synthesis system can be used for the rapid expression of an enantioselective enzyme for an efficient identification of the chiral activity.

Implement of Semi-automatic Labeling Using Transcripts Text (전사텍스트를 이용한 반자동 레이블링 구현)

  • Won, Dong-Jin;Chang, Moon-soo;Kang, Sun-Mee
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.25 no.6
    • /
    • pp.585-591
    • /
    • 2015
  • In transcription for spoken language research, labeling is a work linking text-represented utterance to recorded speech. Most existing labeling tools have been working manually. Semi-automatic labeling we are proposing consists of automation module and manual adjustment module. Automation module extracts voice boundaries utilizing G.Saha's algorithm, and predicts utterance boundaries using the number and length of utterance which established utterance text. For maintaining existing manual tool's accuracy, we provide manual adjustment user interface revising the auto-labeling utterance boundaries. The implemented tool of our semi-automatic algorithm speed up to 27% than existing manual labeling tools.