• 제목/요약/키워드: Transcription regulatory element

검색결과 112건 처리시간 0.027초

Nur77 inhibits TR4-induced PEPCK expression in 3T3-L1 adipocytes

  • Park, Sung-Soo;Kim, Eung-Seok
    • Animal cells and systems
    • /
    • 제16권2호
    • /
    • pp.87-94
    • /
    • 2012
  • Nur77 is a member of the nuclear receptor 4A (NR4A) subgroup, which has been implicated in energy metabolism. Although Nur77 is found in adipose tissue, where TR4 plays a key role in lipid homeostasis, the role of Nur77 in adipogenesis is still controversial. Although the Nur77 responsive element (AAAGGTCA) is partially overlapped with TR4-binding sites (AGGTCA $n$ AGGTCA: $n$=0-6), the regulatory role of Nur77 in TR4 function associated with adipocyte biology remains unclear. Here, we found that Nur77 inhibits adipogenesis and TR4 transcriptional activity. Treatment with a Nur77 agonist, 1,1-bis(3'-indolyl)-1-($p$-anisyl)-methane, during 3T3-L1 adipocyte differentiation reduced adipogenesis. In reporter gene analysis, Nur77 specifically suppressed TR4 transcription activity but had little effect on $PPAR{\gamma}$ transcription activity. Consistently, Nur77 also suppressed TR4-induced promoter activity of the TR4 target gene PEPCK, which is known to be important for glyceroneogenesis in adipose tissue. Furthermore, Nur77 suppressed TR4 binding to TR4 response elements without direct interaction with TR4, suggesting that Nur77 may inhibit TR4 transcription activity via binding competition for TR4-binding sites. Furthermore, DIM-C-$pPhOCH_3$ substantially suppressed TR4-induced PEPCK expression in 3T3-L1 adipocytes. Together, our data demonstrate that Nur77 plays an inhibitory role in TR4-induced PEPCK expression in 3T3-L1 adipocytes.

HeLa E-Box Binding Protein, HEB, Inhibits Promoter Activity of the Lysophosphatidic Acid Receptor Gene Lpar1 in Neocortical Neuroblast Cells

  • Kim, Nam-Ho;Sadra, Ali;Park, Hee-Young;Oh, Sung-Min;Chun, Jerold;Yoon, Jeong Kyo;Huh, Sung-Oh
    • Molecules and Cells
    • /
    • 제42권2호
    • /
    • pp.123-134
    • /
    • 2019
  • Lysophosphatidic acid (LPA) is an endogenous lysophospholipid with signaling properties outside of the cell and it signals through specific G protein-coupled receptors, known as $LPA_{1-6}$. For one of its receptors, $LPA_1$ (gene name Lpar1), details on the cis-acting elements for transcriptional control have not been defined. Using 5'RACE analysis, we report the identification of an alternative transcription start site of mouse Lpar1 and characterize approximately 3,500 bp of non-coding flanking sequence 5' of mouse Lpar1 gene for promoter activity. Transient transfection of cells derived from mouse neocortical neuroblasts with constructs from the 5' regions of mouse Lpar1 gene revealed the region between -248 to +225 serving as the basal promoter for Lpar1. This region also lacks a TATA box. For the region between -761 to -248, a negative regulatory element affected the basal expression of Lpar1. This region has three E-box sequences and mutagenesis of these E-boxes, followed by transient expression, demonstrated that two of the E-boxes act as negative modulators of Lpar1. One of these E-box sequences bound the HeLa E-box binding protein (HEB), and modulation of HEB levels in the transfected cells regulated the transcription of the reporter gene. Based on our data, we propose that HEB may be required for a proper regulation of Lpar1 expression in the embryonic neocortical neuroblast cells and to affect its function in both normal brain development and disease settings.

식이유도 비만 동물모델에서 마르멜로추출물의 항비만 효능 비교 연구 (A Comparative Study on Anti-Obesity Efficacy of Cydonia oblonga Miller Fruit Extract in Diet-Induced Obesity Animal Models)

  • 황정순;황명오;권기성;김은지
    • 한방비만학회지
    • /
    • 제24권1호
    • /
    • pp.13-24
    • /
    • 2024
  • Objectives: The objective of this study was to explore the anti-obesity effect of Cydonia oblonga Miller fruit extract (COME) and to compare its anti-obesity efficacy with Garcinia cambogia extract (GCE) in diet-induced obese mice. Methods: Five-week-old male C57BL/6 were allocated into four groups: control diet (CD), high-fat diet (HFD), HFD + 400 mg/kg body weight (BW)/day COME (H+C), or HFD + 400 mg/kg BW/day GCE (H+G) groups. COME or GCE was administered once a day by oral gavage for eight weeks. Body weight, body fat percentage, fat weight, and biochemical parameters in serum were measured. The expressions of transcription factors and their target genes in epididymal adipose tissues were analyzed by reverse transcription polymerase chain reaction. Results: COME reduced body weight, weight gain, body fat percentage, total white adipose tissue weight, adipocyte size, and serum levels of insulin and leptin in high-fat diet-induced obese C57BL/6 mice. COME suppressed the mRNA expressions of CCAAT/enhancer binding proteinα, peroxisome proliferator-activated receptorγ, sterol-regulatory element-binding protein-1c, fatty acid synthase, and adipocyte protein 2 and increased carnitine palmitoyl transferase 1 mRNA expression in epidydimal adipose tissues. The anti-obesity efficacy of COME was found to be similar to that of GCE at the same dose. However, COME more effectively decreased adipose tissue weights, epididymal adipocyte size, serum insulin and leptin compared to GCE. Conclusions: These results demonstrated that COME is not toxic and exhibits anti-obesity efficacy at a level similar to that of GCE, suggesting that COME may be applicable as an anti-obesity agent.

적무 새싹 추출물의 3T3-L1 지방전구세포에서 지방합성 억제 효과 (Antiadipogenic Effects of Red Radish (Raphanus sativus L.) Sprout Extract in 3T3-L1 Preadipocytes)

  • 김다혜;김상준;정승일;천춘진;김선영
    • 생명과학회지
    • /
    • 제24권11호
    • /
    • pp.1224-1230
    • /
    • 2014
  • 적무(Rahphanus sativus L.) 새싹은 십자화과 식물이다. 본 연구에서는 적무새싹 물 추출물의 ${\alpha}$-amylase, ${\alpha}$-glucosidase, 췌장 리파아제 효소에 대한 활성 억제능과 3T3-L1 지방 전구세포를 이용하여 지방합성 억제 효능을 평가하였다. 적무새싹 추출물을 처리한 결과 ${\alpha}$-amylase, ${\alpha}$-glucosidase, 췌장 리파아제 효소 활성을 농도 의존적으로 억제하는 것을 확인하였다. 더욱이 적무새싹 추출물은 3T3-L1 지방 전구세포의 지방세포 분화, 지방 및 중성지방 축적을 억제하였으며 세포독성은 나타나지 않았다. 적무새싹 추출물은 peroxisome proliferator-activated receptor (PPAR)${\gamma}$, sterol regulatory element-binding protein 1 (SREBP-1) and CCAT/enhancer binding protein (C/EBP)${\alpha}$와 같은 지방합성 전사 인자의 발현 조절을 통하여 지방합성을 억제하였다. 또한, 적무새싹 추추물은 지방합성과 수송 저장에 관여하는 단백질인 adiponectin, fatty acid synthesis (FAS), perillipin, and fatty acid bind protein-4(FABP4)의 발현을 억제하였다. 이 연구는 적무새싹이 지방합성 전사인자는 물론 지방합성 단백질 발현의 제어를 통해 비만을 억제할 수 있는 가능성을 보여주었다.

한우(Bos taurus coreanae) 유래 myoblast에서 전사인자 과발현에 의한 지방세포로의 교차 분화 유도 (Effects of Ectopic Expression of Transcription Factors on Adipogenic Transdifferentiation in Bovine Myoblasts)

  • 문양수
    • 생명과학회지
    • /
    • 제22권10호
    • /
    • pp.1316-1323
    • /
    • 2012
  • 본 연구는 한우유래 myoblast에서 지방세포분화 유도 전사인자들을 과발현시켜 지방세포로의 교차분화를 유도하기 위하여 실시하였다. 한우 유래 satellite cell을 배양한 후 adipogenic transcription factor인 $PPAR{\gamma}$, C/$EBP{\alpha}$, SREBP1c, KLF5등을 단독 또는 co-transfection을 실시하여 세포에 과발현을 유도하였다. 이들 세포들은 adipogenic differentiation medium에서 2일간 배양한 후growth medium에서 8일간 추가로 배양하였다. 지방세포로의 교차분화 유무는 Oil-red O염색과 지방세포 마커 유전자들의 발현으로 확인하였다. $PPAR{\gamma}$과 C/$EBP{\alpha}$를 각각 단독으로 과발현을 유도한 경우myoblast에서 지방세포로의 교차분화를 유도하기에는 충분하지 못하였다. 그러나 $PPAR{\gamma}$와 C/$EBP{\alpha}$을 co-transfection을 실시한 경우 지방세포로의 교차분화가 유도되었고, 세포내지방구형성, 지방세포 마커유전자의 발현, 근세포 마커유전자의 발현 감소 등이 확인되었다. KLF5 와 $PPAR{\gamma}$를 동시에 과발현할 경우 지방세포로의 교차분화를 볼 수 있었지만 KLF단독의 경우는 교차분화를 유도하지 못하였다. 할성형SREBP1c (tSREBP1c)의 경우, 단독으로 myoblast에 과발현을 처리한 경우만으로 지방세포로의 교차분화를 유도할 수 있었다. 이들 결과는 한우유래 satellite cell을 이용하여 지방세포분화 전사인자를 단독 혹은 조합하여 이들 세포에 과발현 시킬 경우 지방세포로의 교차분화를 유도할 수 있음을 보여 주었다.

No Role of Protected Region B of Human Cytochrome P4501A2 Gene (CYP1A2) As an AP-1 Response Element

  • Chung, In-Jae;Jung, Ki-Hwa
    • Archives of Pharmacal Research
    • /
    • 제25권3호
    • /
    • pp.375-380
    • /
    • 2002
  • Cytochrome P4501A2 (CYP1A2) is a member of the cytochrome P450 family of isozymes involved in the phase I drug metabolism of vertebrates. CYP1A2 is responsible for the activation of a number of aromatic amines to mutagenic and carcinogenic forms. Thus, the level of CYP1A2, which varies among different populations, may determine an individual's susceptibility to these chemicals. We have previously reported on the importance of a cis element named PRB (protected region B) in the regulation of human Cytochrome P4501A2 (CYP1A2) gene, which appeared to act as a positive regulatory element. Closer examination of the PRB sequence (-2218 to -2187 bp) revealed a putative AP-1 binding site, TGACTAA, at -2212 bp (Chung and Bresnick, 1997). To elucidate the role of AP-1 in CYP1A2 regulation, we transiently overexpressed c-Jun and c-Fos transcription factors in human hepatoma HepG2 cells, and examined their influence on the CYP1A2 promoter activity by reporter gene assays. Cotransfection of the c-Jun and the c-Fos expression vectors increased the induced transactivation by five to six fold from the CYP1A2 promoter constructs. However, deletion of the PRB element did not affect the degree of activation by the c-Jun and the c-Fos. Therefore, it is unlikely that the c-Jun and the c-Fos activate the CYP1A2 promoter through this AP-1 consensus-like sequence in the PRB region.

All-trans retinoic acid가 면역세포의 Toll-like receptor 5 발현에 미치는 영향 (Effects of all-trans retinoic acid on expression of Toll-like receptor 5 on immune cells)

  • 김기형;박상준
    • Journal of the Korean Association of Oral and Maxillofacial Surgeons
    • /
    • 제36권6호
    • /
    • pp.481-489
    • /
    • 2010
  • Introduction: TLR-5, a member of the toll-like receptor (TLR) family, is a element of the type I transmembrane receptors, which are characterized by an intracellular signaling domain homolog to the interleukin-1 receptor. These receptors recognize microbial components, particularly bacterial flagellin. All-trans retinoic acid (atRA, tretinoin), a natural metabolite of vitamin A, acts as a growth and differentiation factor in many tissues, and is also needed for immune functions. In this study, THP-1 human macrophage-monocytes were used to examine the mechanisms by which atRA regulated the expression of TLR-5. Because the molecular mechanism underlying this regulation at the transcriptional level is also unclear, this study examined which putative transcription factors are responsible for TLR-5 expression by atRA in immune cells. Materials and Methods: This study examined whether atRA induces the expression of TLR-5 in THP-1 cells using reverse transcription-polymerase chain reaction (RT-PCR), and which transcription factors are involved in regulating the TLR-5 promoter in RAW264.7 cells using a reporter assay system. Western blot analysis was used to determine which signal pathway is involved in the expression of TLR-5 in atRA-treated THP-1 cells. Results: atRA at a concentration of 10 nM greatly induced the expression of TLR-5 in THP-1 cells. Human TLR-5 promoter contains three Sp-1/GC binding sites around -50 bp and two NF-kB binding sites at -380 bp and -160 bp from the transcriptional start site of the TLR-5 gene. Sp-1/GC is primarily responsible for the constitutive TLR-5 expression, and may also contribute to NF-kB at -160 bp to induce TLR-5 after atRA stimulation in THP-1 cells. The role of NF-kB in TLR-5 expression was further confirmed by inhibitor pyrrolidine dithiocarbamate (PDTC) experiments, which greatly reduced the TLR-5 transcription by 70-80%. Conclusion: atRA induces the expression of the human TLR-5 gene and NF-kB is a critical transcription factor for the atRA-induced expression of TLR-5. Accordingly, it is conceivable that retinoids are required for adequate innate and adaptive immune responses to agents of infectious diseases. atRA and various synthetic retinoids have been used therapeutically in human diseases, such as leukemia and other cancers due to the antiproliferative and apoptosis inducing effects of retinoids. Therefore, understanding the molecular regulatory mechanism of TLR-5 may assist in the design of alternative strategies for the treatment of infectious diseases, leukemia and cancers.

Regulatory Roles of Chrysanthemum zawadskii Roots in Nuclear Factor E2-related Factor 2/Antioxidant Response Element Pathway

  • Kang, Hye-Sook;Park, Min-Ji;Jin, Kyong-Suk;Kim, Young-Hun;Jun, Mi-Ra;Lim, Ho-Jin;Jo, Wan-Kuen;Kim, Jong-Sang;Jeong, Woo-Sik
    • Food Science and Biotechnology
    • /
    • 제17권2호
    • /
    • pp.367-372
    • /
    • 2008
  • Cellular protection against carcinogens could be achieved by the induction of phase 2 detoxifying and antioxidant enzymes such as glutathione S-transferase (GST), NAD(P)H:quinone oxidoreductase 1 (NQO1) and heme oxygenase 1 (HO1). Nuclear transcription factor E2-related factor 2 (Nrf2) binds to antioxidant response element (ARE) in the promoter region of these genes and the resulting transactivation occurs. In the present study the effect of gujeolcho (Chrysanthemum zawadskii) roots on the Nrf2-ARE pathway were investigated. C. zawadskii root extract was fractionated with a series of organic solvents and their ability to induce Nrf2-ARE pathway was examined. We separated the most potent dichloromethane (DCM) fraction into 12 sub-fractions and found several sub-fractions with strong effects on the Nrf2-ARE pathway. Fraction 4 strongly induced the ARE-reporter gene activity as well as Nrf2 expression. Sitosterol was isolated as a major compound in fraction 4 although its activity was not as potent as its mother fraction. These results indicate that C. zawadskii roots might be used as a potential natural chemopreventive source.

Screening and functional validation of lipid metabolism-related lncRNA-46546 based on the transcriptome analysis of early embryonic muscle tissue in chicken

  • Ruonan, Chen;Kai, Liao;Herong, Liao;Li, Zhang;Haixuan, Zhao;Jie, Sun
    • Animal Bioscience
    • /
    • 제36권2호
    • /
    • pp.175-190
    • /
    • 2023
  • Objective: The study was conducted to screen differentially expressed long noncoding RNA (lncRNA) in chickens by high-throughput sequencing and explore its mechanism of action on intramuscular fat deposition. Methods: Herein, Rose crown and Cbb broiler chicken embryo breast and leg muscle lncRNA and mRNA expression profiles were constructed by RNA sequencing. A total of 96 and 42 differentially expressed lncRNAs were obtained in Rose crown vs Cobb broiler chicken breast and leg muscle, respectively. lncRNA-ENSGALT00000046546, with high interspecific variability and a potential regulatory role in lipid metabolism, and its predicted downstream target gene 1-acylglycerol-3-phosphate-O-acyltransferase 2 (AGPAT2), were selected for further study on the preadipocytes. Results: lncRNA-46546 overexpression in chicken preadipocyte 2 cells significantly increased (p<0.01) the expression levels of AGPAT2 and its downstream genes diacylglycerol acyltransferase 1 and diacylglycerol acyltransferase 2 and those of the fat metabolism-related genes peroxisome proliferator-activated receptor γ, CCAAT/enhancer binding protein α, fatty acid synthase, sterol regulatory element-binding transcription factor 1, and fatty acid binding protein 4. The lipid droplet concentration was higher in the overexpression group than in the control cells, and the triglyceride content in cells and medium was also significantly increased (p<0.01). Conclusion: This study preliminarily concludes that lncRNA-46546 may promote intramuscular fat deposition in chickens, laying a foundation for the study of lncRNAs in chicken early embryonic development and fat deposition.

곽향과 금전초 추출물이 Palmitic acid로 유발된 비알코올성 지방간 세포 모델에 미치는 영향 (Effects of Agastachis Herba Extract and Lysimachiae Herba Extract on the Experimental Cellular Model of NFLDs Induced by Palmitic Acid)

  • 이혜인;김영광;임현찬;이다은;김은지;문영호
    • 대한한방내과학회지
    • /
    • 제39권3호
    • /
    • pp.302-312
    • /
    • 2018
  • Objectives: This study was performed to investigate the effects of two herbal medicines, Agastachis Herba and Lysimachiae Herba, on a cellular model of non-alcoholic fatty liver diseases (NFLDs). Methods: HepG2 cells were treated with palmitic acid and with various concentrations of Agastachis Herba (AH) or Lysimachiae Herba (LH) extract in water. The lipotoxicity was assessed using EZ-cytox, and the lipoapoptosis was assessed using cell death detection ELISA. Intracellular lipids were measured by oil red O staining. The efficacy of AH and LH on sterol regulatory element-binding transcription factor-1c (SREBP-1c), fatty acid synthase (FAS), and acetyl-CoA carboxylase (ACC) in HepG2 cells was measured by reverse transcription polymerase chain reaction (RT-PCR). Results: Both AH and LH extracts increased lipoapoptosis and decreased lipotoxicity and levels of SREBP-1c, ACC, and FAS (SREBP-1c, ACC, and FAS are factors in lipid synthesis). In the oil red O staining experiment, both extracts also reduced intracellular lipid accumulation; in this instance, LH's efficacy was superior to that of AH. Conclusions: According to the results, both AH and LH are likely to contribute to non-alcoholic fatty liver disease, as both interfere with lipid synthesis.