• Title/Summary/Keyword: Transcription regulatory element

Search Result 111, Processing Time 0.025 seconds

Calibrating Thresholds to Improve the Detection Accuracy of Putative Transcription Factor Binding Sites

  • Kim, Young-Jin;Ryu, Gil-Mi;Park, Chan;Kim, Kyu-Won;Oh, Berm-Seok;Kim, Young-Youl;Gu, Man-Bok
    • Genomics & Informatics
    • /
    • v.5 no.4
    • /
    • pp.143-151
    • /
    • 2007
  • To understand the mechanism of transcriptional regulation, it is essential to detect promoters and regulatory elements. Various kinds of methods have been introduced to improve the prediction accuracy of regulatory elements. Since there are few experimentally validated regulatory elements, previous studies have used criteria based solely on the level of scores over background sequences. However, selecting the detection criteria for different prediction methods is not feasible. Here, we studied the calibration of thresholds to improve regulatory element prediction. We predicted a regulatory element using MATCH, which is a powerful tool for transcription factor binding site (TFBS) detection. To increase the prediction accuracy, we used a regulatory potential (RP) score measuring the similarity of patterns in alignments to those in known regulatory regions. Next, we calibrated the thresholds to find relevant scores, increasing the true positives while decreasing possible false positives. By applying various thresholds, we compared predicted regulatory elements with validated regulatory elements from the Open Regulatory Annotation (ORegAnno) database. The predicted regulators by the selected threshold were validated through enrichment analysis of muscle-specific gene sets from the Tissue-Specific Transcripts and Genes (T-STAG) database. We found 14 known muscle-specific regulators with a less than a 5% false discovery rate (FDR) in a single TFBS analysis, as well as known transcription factor combinations in our combinatorial TFBS analysis.

Heterologous Regulation of BCG hsp65 Promoter by M.leprae 18 kDa Transcription Repression Responsive Element

  • Kim, Hyun Bae;You, Ji Chang
    • Genomics & Informatics
    • /
    • v.1 no.2
    • /
    • pp.113-118
    • /
    • 2003
  • Among a number of antigens characterized in M leprae, an etiological agent of Leprosy, the 18 kDa antigen, is unique to M leprae. We have previously determined a sequence specific element in the 18 kDa gene of M leprae, which confers transcriptional repression. In this report, we have examined if the element could be applied to genes other than the 18 kDa gene of M leprae. To identify the roles of the regulatory sequence in heterologous promoter, we have constructed pB3 vector series, which contains BCG hsp65 promoter and the M leprae 18 kDa transcription repression responsive element in tandem using LacZ gene as a reporter gene. Cloning of hsp65 promoters of M bovis BCG or M smegmatis in front of LacZ gene resulted in normal $\beta$­galactosidase activity as expected. However, when the sequence element was placed between the promoter and the LacZ gene, $\beta$-galactosidase activity was reduced 10-fold less. Also we have examined with pB3(-) vector, that harbors the transcription repression responsive element in a reversed orientation, the $\beta$-galactosidase activity was found to be similar to pB3(+) vector. Thus, these results further confirm that M leprae 18 kDa transcription repression responsive element could regulate BCG hsp65 heterologous promoter and that the element could act as an operator for the transcription of mycobacteria.

CONVIRT: A web-based tool for transcriptional regulatory site identification using a conserved virtual chromosome

  • Ryu, Tae-Woo;Lee, Se-Joon;Hur, Cheol-Goo;Lee, Do-Heon
    • BMB Reports
    • /
    • v.42 no.12
    • /
    • pp.823-828
    • /
    • 2009
  • Techniques for analyzing protein-DNA interactions on a genome-wide scale have recently established regulatory roles for distal enhancers. However, the large sizes of higher eukaryotic genomes have made identification of these elements difficult. Information regarding sequence conservation, exon annotation and repetitive regions can be used to reduce the size of the search region. However, previously developed resources are inadequate for consolidating such information. CONVIRT is a web resource for the identification of transcription factor binding sites and also features comparative genomics. Genomic information on ortholog-independent conserved regions, exons, repeats and sequences is integrated into the virtual chromosome, and statistically over-represented single or combinations of transcription factor binding sites are sought. CONVIRT provides regulatory network analysis for several organisms with long promoter regions and permits inter-species genome alignments. CONVIRT is freely available at http://biosoft.kaist.ac.kr/convirt.

Expressional Evaluation of C/EBP Family, SREBP1, and Steroid Hormone Receptors in the Epididiymal Fat of Postnatally Developing Mouse

  • Lee, Yong-Seung;Lee, Ki-Ho
    • Development and Reproduction
    • /
    • v.26 no.2
    • /
    • pp.49-58
    • /
    • 2022
  • The differentiation and development of preadipocyte into mature adipocyte are regulated by transcription factors, such as CCAAT enhancer binding protein (Cebp) gene family and sterol regulatory element binding transcription factor 1 (Srebp1). Steroid hormones give influences on the development and function of adipocyte. The present research examined expression patterns of CCAAT enhancer binding protein alpha (Cebpa), CCAAT enhancer binding protein beta (Cebpb), CCAAT enhancer binding protein gamma (Cebpg), sterol regulatory element binding transcription factor 1 (Srebp1), androgen receptor (Ar), and estrogen receptors (Esr) among different epididymal fat parts during postnatal period by quantitative real-time polymerase chain reaction. In the distal epididymal fat, expression of Cebpa, Cebpb, Cebpg, Srebp1, Ar, and Esr2 was increased until 12 months of age, while expression of Esr1 was decreased at 5 months of age and was not detectable after 8 months of age. In the proximal epididymal fat, transcript levels of Cebps and Srebp1 were increased at 8 months of age, followed by decreases of Cebpb and Cebpg transcript levels at 12 months of age. An additional increase of Srebp1 expression was observed at 12 months of age. Expression of Ar and Esr2 were increased until 8 months of age, followed by a drop of Ar expression level at 12 months of age. Expression pattern of Esr1 was similar to that in the distal epididymal fat. In the tail epididymal fat, expression of Cebpa, Cebpg, Srebp1, Ar, and Esr2 was increased with age. Esr1 was not detectable at all. The highest level of Cebpb was observed at 8 months of age. These data suggest the possibility of developmental and functional differentiation among the epididymal fat parts.

DNAse 1 Hypersensitive Sites of Lung Specific Transcription Factor Gene (폐특이 전사조절 유전자의 DNAse 1 Hypersensitive Sites)

  • Lee, Yong-Chul
    • Tuberculosis and Respiratory Diseases
    • /
    • v.48 no.6
    • /
    • pp.879-886
    • /
    • 2000
  • Background : Thyroid Transcription Factor-1(TTF-1) acts as a tissue specific transcription factor in the regulation of lung specific gene expression and as morphogenic protein during lung organogenesis. Currently, there is very little information on the cis-acting sequences and transcription factors that direct the TTF-1 gene expression. DNAse 1 hypersensitive (DH) sites represent a marker for active or potentially active chromatin and are likely to be especially important in gene regulation, being associated with many DNA sequences that regulate gene expression. It is clear that DH regions correlate with genetic regulatory loci and binding for sequence-specific DNA-binding proteins. Methods : We have used DH site assays to identify putative distal regulatory elements in H441 lung adenocarcinoma cells, which express the TTF-1 gene and HeLa cells. Results : There are four DH sites 5' of the TTF-1 gene. These sites are located at base pair approximately +150, -450, -800, and -1500 from the start of transcription. Conclusion : These data suggest that there may be at least one intragenic site and regulatory region 5' prime to the promotor region.

  • PDF

Characterization of a Positive Regulatory cis-Element and Transacting Factors for the Hepatitis B Viral Pregenomic Promoter

  • Choi, Cheol-Yong;Park, Geon-Tae;Rho, Hyune-Mo
    • BMB Reports
    • /
    • v.29 no.2
    • /
    • pp.156-162
    • /
    • 1996
  • Transcription of hepatitis B viral pregenomic promoter is known to be regulated mainly by the combined interaction of enhancers I, II and the intervening regulatory sequences between the two enhancers. A positive regulatory element was identified by serial deletion and measuring the linked chloramphenicol acetyltransferase (CAT) activities, which overlapped with the 5' region of the X open reading frame. When the positive regulatory element was inserted upstream of the SV40 early promoter, it elevated SV40 promoter activity in HepG2 cells. Two cellular proteins of 110 (p110) and 33 (p33) kDa interacted with the positive element and both of them were present in the nucleus, but p110 also existed in the cytoplasm in phosphorylated form. Dephosphorylation of p110 by acid phosphatase enhanced the DNA-binding activity of p110. The p33 could bind to single-strand DNA specifically as well as to double-strand DNA.

  • PDF

Promoter Structure Which Affects on the Expression of Yeast MGMT Gene

  • Choe, Soo-Young
    • BMB Reports
    • /
    • v.30 no.1
    • /
    • pp.41-45
    • /
    • 1997
  • The present study was performed to analyze the molecular mechanism which dictates the transcription regulation of the $O^6$-methylguanine-DNA methyltransferase (MGMT) gene in Saccharomyces cerevisiae. Previously we identified one possible upstream repressing sequence (URS) in MGMT promoter by promoter deletion and competition analysis. In this paper we report another regulatory element (UAS: upstream activating sequence. -213 to -136) which affects the transcription activity of MGMT promoter. Gel mobility shift assay and Southwestern blot analysis using UAS probe showed several specific proteins which were able to bind to this sequence.

  • PDF

Discovering cis-regulatory motifs by combining multiple predictors

  • Chang, Hye-Shik;Hwang, Kyu-Woong;Kim, Dong-Sup
    • Bioinformatics and Biosystems
    • /
    • v.2 no.2
    • /
    • pp.52-57
    • /
    • 2007
  • The computational discovery of transcription factor binding site is one of the important tools in the genetic and genomic analysis. Rough prediction of gene regulation network and finding possible co-regulated genes are typical applications of the technique. Countless motif-discovery algorithms have been proposed for the past years. However, there is no dominant algorithm yet. Each algorithm does not give enough accuracy without extensive information. In this paper, we explore the possibility of combining multiple algorithms for the one integrated result in order to improve the performance and the convenience of researchers. Moreover, we apply new high order information that is reorganized from the set of basis predictions to the final prediction.

  • PDF

Regulatory Sequences in the 5' Flanking Region of Goat β-Casein Gene

  • Huang, Mu-Chiou;Chao, Jiunn-Shiuan
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.14 no.11
    • /
    • pp.1628-1633
    • /
    • 2001
  • A goat ${\beta}$-casein gene was cloned and sequenced. Our previous study had determined the nucleotide sequences of the 5' flanking region and the structural gene including all 9 exons. In the present study, investigations were done on the regulatory sequences in the 5' flanking region of the goat ${\beta}$-casein gene by aligning and comparing it with the same gene from other mammals. The results showed that -200/-1 bp of the 5' flanking sequences contained six conserved clusters, in which the sites of gene expression regulated by the transcription factor and hormone might exist. It showed that fourteen glucocorticoid receptor elements, two cAMP responsive elements, two SV40 virus enhancer core sequences, two OCT-1 binding elements and one CTF/NF-1 binding element were dispersed in the 5' flanking region of goat ${\beta}$-casein gene. Our findings are perhaps valuable for the elucidation of the molecular mechanisms that control the expression of the goat ${\beta}$-casein gene.

FCAnalyzer: A Functional Clustering Analysis Tool for Predicted Transcription Regulatory Elements and Gene Ontology Terms

  • Kim, Sang-Bae;Ryu, Gil-Mi;Kim, Young-Jin;Heo, Jee-Yeon;Park, Chan;Oh, Berm-Seok;Kim, Hyung-Lae;Kimm, Ku-Chan;Kim, Kyu-Won;Kim, Young-Youl
    • Genomics & Informatics
    • /
    • v.5 no.1
    • /
    • pp.10-18
    • /
    • 2007
  • Numerous studies have reported that genes with similar expression patterns are co-regulated. From gene expression data, we have assumed that genes having similar expression pattern would share similar transcription factor binding sites (TFBSs). These function as the binding regions for transcription factors (TFs) and thereby regulate gene expression. In this context, various analysis tools have been developed. However, they have shortcomings in the combined analysis of expression patterns and significant TFBSs and in the functional analysis of target genes of significantly overrepresented putative regulators. In this study, we present a web-based A Functional Clustering Analysis Tool for Predicted Transcription Regulatory Elements and Gene Ontology Terms (FCAnalyzer). This system integrates microarray clustering data with similar expression patterns, and TFBS data in each cluster. FCAnalyzer is designed to perform two independent clustering procedures. The first process clusters gene expression profiles using the K-means clustering method, and the second process clusters predicted TFBSs in the upstream region of previously clustered genes using the hierarchical biclustering method for simultaneous grouping of genes and samples. This system offers retrieved information for predicted TFBSs in each cluster using $Match^{TM}$ in the TRANSFAC database. We used gene ontology term analysis for functional annotation of genes in the same cluster. We also provide the user with a combinatorial TFBS analysis of TFBS pairs. The enrichment of TFBS analysis and GO term analysis is statistically by the calculation of P values based on Fisher’s exact test, hypergeometric distribution and Bonferroni correction. FCAnalyzer is a web-based, user-friendly functional clustering analysis system that facilitates the transcriptional regulatory analysis of co-expressed genes. This system presents the analyses of clustered genes, significant TFBSs, significantly enriched TFBS combinations, their target genes and TFBS-TF pairs.