• Title/Summary/Keyword: Transcription initiation site

Search Result 43, Processing Time 0.028 seconds

Identification of Bacteriophage K11 Genomic Promoters for K11 RNA Polymerase

  • Han, Kyung-Goo;Kim, Dong-Hee;Junn, Eun-Sung;Lee, Sang-Soo;Kang, Chang-Won
    • BMB Reports
    • /
    • v.35 no.6
    • /
    • pp.637-641
    • /
    • 2002
  • Only one natural promoter that interacts with bacteriophage K11 RNA polymerase has so far been identified. To identify more, in the present study restriction fragments of the phage genome were individually assayed for transcription activity in vitro. The K11 genome was digested with two 4-bp-recognizing restriction enzymes, and the fragments cloned in pUC119 were assayed with purified K11 RNA polymerase. Eight K11 promoter-bearing fragments were isolated and sequenced. We report that the nine K11 promoter sequences (including the one previously identified) were highly homologous from -17 to +4, relative to the initiation site at +1. Interestingly, five had -10G and -8A, while the other four had -10A and -8C. The consensus sequences with the natural -10G/-8A and -10A/-8C, and their variants with -10G/-8C and -10A/-8A, showed nearly equal transcription activity, suggesting residues at -10 and -8 do not regulate promoter activity. Using hybridization methods, physical positions of the cloned promoter-bearing sequences were mapped on SalI-and KpnI-restriction maps of the K11 genome. The flanking sequences of six cloned K11 promoters were found to be orthologous with T7 or T3 genomic sequences.

Genomic Organization of Penicillium chrysogenum chs4, a Class Ⅲ Chitin Synthase Gene

  • 박윤동;이명숙;남경준;박범찬;배경숙;박희문
    • Korean Journal of Microbiology
    • /
    • v.38 no.4
    • /
    • pp.230-230
    • /
    • 2002
  • Class Ⅲ chitin synthases in filamentous fungi are important for hyphal growth and differentiation of several filamentous fungi. A genomic clone containing the full gene encoding Chs4, a class Ⅲ chitin synthase in Penicillium chrysogenum, was cloned by PCR screening and colony hybridization from the genomic library. Nucleotide sequence analysis and transcript mapping of chs4 revealed an open reading frame (ORF) that consisted of 5 exons and 4 introns and encoded a putative protein of 915 amino acids. Nucleotide sequence analysis of the 5′flanking region of the ORF revealed a potential TATA box and several binding sites for transcription activators. The putative transcription initiation site at -716 position was identified by primer extension and the expression of the chs4 during the vegetative growth was confirmed by Northern blot analysis. Amino acid sequence analysis of the Chs4 revealed at least 5 transmembrane helices and several sites for past-transnational modifications. Comparison of the amino acid sequence of Chs4 with those of other fungi showed a close relationship between P chrysogenum and genus Aspergillus.

Nucleotide Sequence Analysis of an Endo-Xylanase Gene (xynA) from Bacillus stearothermophilus

  • Cho, Ssang-Goo;Choi, Yong-Jin
    • Journal of Microbiology and Biotechnology
    • /
    • v.5 no.3
    • /
    • pp.117-124
    • /
    • 1995
  • A gene (xynA) encoding the endo-xylanase (E.C.3.2.1.8) from Bacillus stearothermophilus was cloned in E. coli, and its complete nucleotide sequence was determined. The xynA gene consists of a 636 base pairs open reading frame coding for a protein of 212 amino acids with a deduced molecular weight of 23, 283 Da. A putative signal sequence of 27 amino acid residues shows the features comparable with the Bacillus signal sequences; namely, the signal contains a positively charged region close to the N-terminus followed by a long hydrophobic string. The coding sequence is preceded by a possible ribosome binding site with a free energy value of -16.6 kcal/mol and the transcription initiation signals are located further upstream. The translation termination codon (TAA) at the 3 end of the coding sequence is followed by two palindrome sequences, one of which is thought to act as a terminator. The xynA gene has a high GC content, especially in the wobble position of codons (64%). Comparison of the primary protein sequence with those of other xylanases shows a high homology to the xylanases belonging to family G.

  • PDF

Symmetry Region at Beginning of Transcript Inhibits Expression of Escherichia coli aeg-46.5 Operon

  • Lee, Seung-Hwa;Lee, Sang-Ho;Sung, Ha-Chin;Kim, Joon;Choe, Mu-Hyeon
    • Journal of Microbiology and Biotechnology
    • /
    • v.9 no.4
    • /
    • pp.436-442
    • /
    • 1999
  • The aeg-46.5 operon of Escherichia coli is induced by nitrate and anaerobic conditions. Positive regulators Fnr and NarP, and a negative regulator NarL control the expression of the aeg-46.5. It has two symmetry regions [6], one of which is located between +37 and +56 bp from the 5'end of the anaerobic transcription initiation site. In this study, mutagenized symmetry regions were transferred from plasmid to chromosome by homologous recombination to evaluate the mutation as a single copy in the fnr, narL, narP, and narL-narP double mutant background. The expressions of the aeg-46.5 operon with these mutations indicated that the control was not through the possible stem-loop structure. Whether there is a protein that mediates this control remains to be seen. The results from the narL-narP double mutant indicated that the anaerobic Fill induction was independent of NarL repression.

  • PDF

Development of a Plasmid Vector(pSS4) for the Use in Animal Transgenesis (유전자 변환 동물 생산을 위한 Plasmid Vector(pSS4)의 개발)

  • 전진태;이상호;박성수
    • Korean Journal of Animal Reproduction
    • /
    • v.17 no.3
    • /
    • pp.263-267
    • /
    • 1993
  • Transgenic animals have become an important tool in the basic and applied sectors of genetic and biomedical sciences. In particular transgenes provide clear-cut markers in the spatial and temporal analysis of developing embryos for the understanding of developmental mechanisms. For the long-term use of plasmid vector in a particular purpose it would be necessary to develop one's own vector system which can be properly expressed in eukaryotic system. Plasmids were constructed from ori region of pUC19 and early region of SV40 through various steps. LacZ gene coding for $\beta$-galactosides was fused to early gene of SV40 in translational in-frame. Poly(A) tailing site of SV40 was inserted at the 3' lacZ so that initiation, elongation and terminatin be controlled by SV40 transcription (pSS4). Biological function of the constructed pSS4 was demonstrated via microinjection of the plasmid into fertilized loach eggs and subsequent detection of $\beta$-galactosidase in developing embryos. The result indicate that the newly constructed pSS4 is functional in a eukaryotic system in vivo. Thus pSS4 may be used as an efficient tool for the study of embryogenesis and a basic carrier for various genes for animal transgenesis.

  • PDF

Analysis of Transcripts Expressed from the UL47 Gene of Human Cytomegalovirus

  • Hyun, Jong-Jun;Park, Hyo-Soon;Kim, Ki-Ho;Kim, Hung-Jin
    • Archives of Pharmacal Research
    • /
    • v.22 no.6
    • /
    • pp.542-548
    • /
    • 1999
  • The UL47 gene (b 60390-b 60388) located in the unique long region of the human cytomegalovirus (HCMV) AD169 strain genome was analyzed RNA mapping. Northern blot analysis showed that the UL47 gene was expressed at late times after infection (72 h postinfection). The 9.7-kb transcript was expressed in the infected cells but not in phosphonoformate-treated cells at 72 hpi, indicating that the UL47 gene was only expressed at late times after infection. To map the 5'-end and 3'-end of UL47 transcripts, primer at late times after infection. To map the 5'-end and 3'-end of UL47 transcripts, primer extension and RNase protection analysis were performed. Primer extension analysis revealed that the transcription initiation site of UL47 was located in 27 bp downstream (b 60323) of the TATA box motif. The sizes of UL47 ORF (approximately 2.9-kb) and UL48 ORF (approximately 6.7-kb) deduced from computer sequence analysis suggest that the expressed 9.7-kb transcript of UL47 uses the 3'-end polyadenylation signal of Ul48. The result of RNase protection determined that the 3'-end of UL47 RNA utilized the 3'-end polyadenylation signal of UL48, which is located in HCMV genome b 70082.

  • PDF

Effective Blocking of Microbial Transcriptional Initiation by dCas9-NG-Mediated CRISPR Interference

  • Kim, Bumjoon;Kim, Hyun Ju;Lee, Sang Jun
    • Journal of Microbiology and Biotechnology
    • /
    • v.30 no.12
    • /
    • pp.1919-1926
    • /
    • 2020
  • CRISPR interference (CRISPRi) has been developed as a transcriptional control tool by inactivating the DNA cleavage ability of Cas9 nucleases to produce dCas9 (deactivated Cas9), and leaving dCas9 the ability to specifically bind to the target DNA sequence. CRISPR/Cas9 technology has limitations in designing target-specific single-guide RNA (sgRNA) due to the dependence of protospacer adjacent motif (PAM) (5'-NGG) for binding target DNAs. Reportedly, Cas9-NG recognizing 5'-NG as the PAM sequence has been constructed by removing the dependence on the last base G of PAM through protein engineering of Cas9. In this study, a dCas9-NG protein was engineered by introducing two active site mutations in Cas9-NG, and its ability to regulate transcription was evaluated in the gal promoter in E. coli. Analysis of cell growth rate, D-galactose consumption rate, and gal transcripts confirmed that dCas9-NG can completely repress the promoter by recognizing DNA targets with PAM of 5'-NGG, NGA, NGC, NGT, and NAG. Our study showed possible PAM sequences for dCas9-NG and provided information on target-specific sgRNA design for regulation of both gene expression and cellular metabolism.

Nucleotide Sequence Analyses of p10 Gene and its Promoter of Hyphantria cunea Nuclear Polyhedrosis Virus (Hyphantria cunea Nuclear Polyhedrosis Virus p10유전자와 프로모터의 염기서열 결정)

  • Park, Sun-A;Cha, Sung-Chul;Chang, Jae-Hyeok;Lee, Hyung-Hoan
    • The Journal of Korean Society of Virology
    • /
    • v.26 no.1
    • /
    • pp.131-137
    • /
    • 1996
  • The sequences of p10 gene its promoter of Hyphantria cunea NPV were determined. According to the sequence analysis, the putative p10 gene ORF has 285 bp. The 5'-non-coding leader sequence of the p10 gene promoter contained the TATA box and the putative transcription initiation site TAAG motif. Poly (A) tail signals, AATAAA sequence was at site 65 base upstream from the 3' terminus. The deduced amino acid sequence of p10 protein was 95 with a predicted molecular weight of 10.26 kDa. In the p10 protein sequence, a hydrophobic region was present at the N-terminus of the protein, whereas the C-terminus was highly hydrophilic. The p10 protein of H. cunea NPV did not contain cysteine, histidine, trytophan, tryptophane, tyrosine, glutamine and asparagine residues.

  • PDF

Recent Advancement in the Differentiation of Tissues and Organs and Regulation of Gene Expression (조직.기관의 분화와 유전자 발현의 조절, 최근의 진보)

  • Harn, Chang-Yawl
    • Korean Journal of Plant Tissue Culture
    • /
    • v.24 no.1
    • /
    • pp.1-35
    • /
    • 1997
  • Fertilized egg, by successive cell divisions, differentiates into different tissues and organs with various structures and functions. Different cells and tissues contain different proteins, products of selective gene expression. Not all the genes in any genomes are equally active, temporal and spatial gene expression being the general rule. Present paper attempts to review the tanscriptional mechanisms or the initiations of transcription from several angles. In some of the organisms the genes in the process of transcription or the genes in the inactive state can be seen under the light microscope. Some bands of Drosophila polytene chromosomes may exhibit a swollen or puff appearance under certain conditions. A puff, unfolded or decondensed form of chromomere, represents sets of intense transcriptional activity or RNA synthesis. The heterochromatic X chromosome whose genes remain inactive in the female mammals can be visualized as a dark staining structure called Barr body, Configuration of chromatin differs between transcribed and nontranscribed chromatin. Modification to the chromatin facilitates RNA synthesis. The movement of large polymerase molecule along the DNA would probably be facilitated if some modifications of the chromatin configuration is effected. Methylation of cytosines in CG sequences is associated with inactive genes. Methylation can play a role in determination of mammalian cells during embryogenesis. Demethylation is necessary for the gene to be expressed during development A histone modification that is also known to be correlated with transcriptional capacity of chromatin is acetylation of the lysine residues of the core histones. Chromatin containing a high level of histone acetylation is very sensitive to DNase 1. For the transcription to occur TBP must first bind to the TATA box. Another TF, TF IIB, then binds to the promoter-TBP complex, facilitating the access of RNA polymerase to the transcription initiation site. As recently as eight years ago researchers assumed that histones were irrelevant to the regulation of gene expression. Histones combine with the DNA to form nucleosome of the chromatin. Histones are vital participant in gene regulation. Histone and basal factors compete for access to TATA box. When DNA is exposed to basal factors before histones are introduced, the basal factors assemble on TATA boxes preventing the access of histones, allowing transcription to occur, for transcription to begin, activator protein at the upstream activation sequence or enhancer must interact with the tail of histone H4 at TATA box and cause the histone role particle to dissociate from the TATA box leading to partial breakup of the histone core particle and allowing the basal factors to bind to the TATA box. New concept of genomic flux in contrast to the old concept of static genome has been developed based on the powerful new molecular techniques. Genomic changes such as repetitive DNAs and transposable elements, it is assumed but not yet proved, may affect some of the developmental patterns that characterize particular cells, tissues, organs, and organisms. In the last decade or so remarkable achievement have been made in the researches of the structures and functions of TFs and the specific target sequences located in promoters or enhancers where these TFs bind. TFs have independent domains that bind DNA and that activate transcription. DNA binding domain of TFs serves to bring the protein into the right location. There are many types of DNA binding domains. Common types of motifs can be found that are responsible for binding to DNA. The motifs are usually quite short and comprise only a small part of the protein structure. Steroid receptors have domains for hormone binding, DNA binding, and activating transcription. The zinc finger motif comprises a DNA binding domain. Leucine zipper consist of a stretch of amino acids with a leucine residue in every seventh position Two proteins form a dimer because they interact by means of leucine zippers on similar α-helical domain. This positions their DNA binding basic domains for interaction with the two halves of a DNA sequence with dyad symmetry of TGACTCA, ACTGAGT.

  • PDF

The Influence of the Nucleotide Sequences of Random Shine-Dalgarno and Spacer Region on Bovine Growth Hormone Gene Expression

  • Paik Soon-Young;Ra Kyung Soo;Cho Hoon Sik;Koo Kwang Bon;Baik Hyung Suk;Lee Myung Chul;Yun Jong Won;Choi Jang Won
    • Journal of Microbiology
    • /
    • v.44 no.1
    • /
    • pp.64-71
    • /
    • 2006
  • To investigate the effects of the nucleotide sequences in Shine-Dalgarno (SD) and the spacer region (SD-ATG) on bovine growth hormone (bGH) gene expression, the expression vectors under the control of the T7 promoter (pT7-7 vector) were constructed using bGH derivatives (bGH1 & bGH14) which have different 5'-coding regions and were induced in E. coli BL21 (DE3). Oligonucleotides containing random SD sequences and a spacer region were chemically synthesized and the distance between the SD region and the initiation codon were fixed to nine bases in length. The oligonucleotides were annealed and fused to the bGH1 and bGH14 cDNA, respectively. When the bGH gene was induced with IPTG in E. coli BL21(DE3), some clones containing only bGH14 cDNA produced considerable levels of bGH in the range of $6.9\%\;to\;8.5\%$ of total cell proteins by SDS-PAGE and Western blot. Otherwise, the bGH was not detected in any clones with bGH1 cDNA. Accordingly, the nucleotide sequences of SD and the spacer region affect on bGH expression indicates that the sequences sufficiently destabilize the mRNA secondary structure of the bGH14 gene. When the free energy was calculated from the transcription initiation site to the +51 nucleotide of bGH cDNA using a program of nucleic acid folding and hybridization prediction, the constructs with values below -26.3 kcal/mole (toward minus direction) were not expressed. The constructs with the original sequence of bGH cDNA also did not show any expression, regardless of the free energy values. Thus, the disruption of the mRNA secondary structure may be a major factor regulating bGH expression in the translation initiation process. Accordingly, the first stem-loop among two secondary structures present in the 5'-end region of the bGH gene should be disrupted for the effective expression of bGH.