• Title/Summary/Keyword: Transcription Culture

Search Result 292, Processing Time 0.032 seconds

Detection of Human Taurine Transporter and Production of Monoclonal Antibody

  • An, Hye-Suk;Han, Hee-Chang;Lee, Sun-Min;Park, Taesun;Park, Kun-Koo;Kim, Ha-Won
    • Proceedings of the Korean Society of Applied Pharmacology
    • /
    • 2001.11a
    • /
    • pp.102-102
    • /
    • 2001
  • Taurine (2-ethaneaminosulfonic acid) is one of the major intracellular ${\beta}$ -amino acids in mammals and is required for a number of biological processes including membrane stabilization, osmoregulation, antioxidation, detoxification, modulation of calcium flux and neurornodulation. The taurine transporter (TAUT) which contains 12 hydrophobic membrane-spanning domains has been cloned from dog kidney, rat brain, mouse brain, human thyroid, placenta and retina. In this study, The TAUT cDNA from the human intestinal epithelial cell, HT-29 was cloned and sequenced. Reverse-transcription polymerase chain reaction (RT-PCR) was performed to amplify partial cDNA encoding human intestinal TAUT. The coding region of the PCR product was 732 bp long. The primers were designed to encode highly conserved amino acid sequences near the transmembrane domains III (IPYFIFLF) and Ⅵ (KYKYNSYR) both in human and mouse. The TAUT cDNA amplified was ligated into the pGEX 4T-1 expression vector. The resulting sequence of human intestinal TAUT cDNA (Accession number of NCBI Genebank is AF346763) was identical to the sequences of the TAUTs previously determined in the human placenta and retina except 3 base pairs from that of the reported human thyroid. TAUT specific antibodies were generated to use them as biological tools in the studies of the biological role of TAUT. Peptides of 149-162 amino acid residue (14 amino acids) of the TAUT were synthesized. The synthetic peptide used in this study was LFQSFQKELPWAHC. This region was chosen not only to avoid putative glycosylation sites but also to exclude regions of known homology with GABA transporters in the extracellular hydrophilic domains. The synthetic peptide, TAUT-1 was conjugated with carrier protein, kehole lympet hemocyanin (KLH) to use as an antigen. When used for immunization on a rabbit to produce polyclonal antiserum, the conjugates elicited high -titered specific anti-TAUT-1 antibodies, which reacted well with the ovalbumin (OVA) conjugated peptides in ELISA. The KLH-conjugated peptide was also used as immunizing antigen in BALB/c mice to produce TAUT specific monoclonal antibodies. From the culture supernatant of the hybridoma, the specificity of anti-TAUT-1 monoclonal antibodies was confirmed by ELISA. Further applications of more tools in TAUT expression analysis will be performed such as western blotting and flow cytometry.

  • PDF

Sequence and Phylogenetic Analysis of Respiratory Syncytial Virus Isolated from Korea (국내에서 유행한 Respiratory Syncytial 바이러스의 염기서열 및 계통분석)

  • Kwon, Soon-Young;Choi, Young-Ju;Kim, So-Youn;Song, Ki-Joon;Lee, Yong-Ju;Choi, Jong-Ouck;Seong, In-Wha
    • The Journal of Korean Society of Virology
    • /
    • v.26 no.1
    • /
    • pp.9-22
    • /
    • 1996
  • Respiratory Syncytial virus (RSV) is an important cause of acute lower respiratory tract infections in human, with infants and young children being particularly susceptible. In the temperate zones, sharp annual outbreaks of RSV occur during the colder months, in both the northern and the southern hemisphere. RSV is unusual in that it can repeatedly reinfect individuals throughout life and infect babies in the presence of maternal antibody. RSV isolates can be divided into two subgroups, A and B, on the basis of their reactions with monoclonal antibodies, and the two subgroups are also distinct at the nucleotide sequence level. The specific diagnosis of RSV infection was best made by isolation of virus in tissue culture, identification of viral antigen, or by specific serologic procedures. Recently, rapid detection of RSV and analysis of RSV strain variation became possible by development of methods of reverse transcription and polymerase chain reaction amplification. In this study, to determine the genetic diversity of RSV found in Korea, 173 bp and 164 bp spanning selected regions of the RSV F and SH genes were enzymatically amplified and sequenced, respectively. Eight for F gene and three for SH gene were detected in 66 nasopharyngeal swap samples tested. Two major antigenic subgroups, A and B were confirmed from Korean samples (seven for subgroup A and one for subgroup B). At the nucleotide level of the F gene region, Korean subgroup A strains showed 95-99% homologies compared to the prototype A2 strain of subgroup A and 93-100% homologies among Korean subgroup A themselves. For the SH gene region, Korean subgroup A strain showed 97.5% homology compared to the prototype A2 strain of subgroup A, and Korean subgroup B strain showed 97% homology compared to the prototype 18537 strain of subgroup B. Most of base changes were transition and occured in codon position 3, which resulted in amino acid conservation. Using the maximum parsimony method, phylogenetic analysis indicated that Korean RSV strains formed a group with other RSV strains isolated from the United States, Canada, the Great Britain and Australia.

  • PDF

Effects of Mineral Trioxide Aggregate on the Proliferation and Differentiation of Human Dental Pulp Stromal Cells from Permanent and Deciduous Teeth (Mineral trioxide aggregate가 유치 및 영구치의 치수기질세포 증식 및 분화에 미치는 영향)

  • Kim, Seunghye;Jeon, Mijeong;Shin, Dong Min;Lee, Jae Ho;Song, Je Seon
    • Journal of the korean academy of Pediatric Dentistry
    • /
    • v.40 no.3
    • /
    • pp.185-193
    • /
    • 2013
  • Mineral trioxide aggregate (MTA) has recently been used as a pulpotomy medicament for primary molars. The aim of this study was to evaluate and compare the proliferation and differentiation potential of dental pulp stromal cells of permanent teeth and deciduous teeth cultured on MTA-coated surface. Human dental pulp stromal cells were obtained from human permanent premolars and deciduous teeth and cultured on MTA-coated culture plates. The cells were subjected to proliferation assay and cell cycle analysis. Their differentiation potential was evaluated by analysing changes in the mRNA expressions of runt-related transcriptional factor 2 (Runx2) and alkaline phosphatase (ALP). Morphological changes of cells in direct contact with MTA were observed using scanning electron microscopy (SEM). The proliferation rates, distribution of cell cycles and mRNA expression patterns of Runx2 and ALP were similar in both types of pulpal cells. SEM observations revealed that both types changed into more dendrite-like cells. On the surface of MTA, human dental pulp stromal cells from deciduous and permanent teeth were able to both proliferate and differentiate into cells that induce mineralization. MTA is suitable as a biocompatible pulpotomy medicament for primary teeth.

Effects of Fractions from Benincasa hispida on Inhibition of Adipogenesis in 3T3-L1 Preadipocytes (동과 분획물이 3T3-L1 지방세포 분화 억제에 미치는 영향)

  • You, Yang-Hee;Jun, Woo-Jin
    • Journal of the Korean Society of Food Science and Nutrition
    • /
    • v.41 no.7
    • /
    • pp.895-900
    • /
    • 2012
  • The effects of three fractions, hexane (BHHH), chloroform (BHHC), and ethyl acetate (BHHE), from water extract of Benincasa hispida on the underlying mechanisms of adipogenesis were investigated in 3T3-L1 cells. Intracellular lipid droplets were stained with Oil Red O dye and quantified. Compared to control, lipid accumulation significantly decreased by 11% and 13% upon treatment with BHHC and BHHE, respectively at a concentration of 50 ${\mu}g/mL$. Intracellular triglyceride (TG) levels were also reduced by 21% and 16%, respectively, at the same concentration. To determine the mechanism behind the reductions in TG content and lipid accumulation, glycerol release and expression levels of adipogenic marker genes were measured. The levels of free glycerol released into culture medium increased by 13% and 17% upon treatment with BHHC and BHHE, respectively. In subsequent measurements using real-time polymerization chain reaction, the mRNA levels of $PPAR{\gamma}$, C/$EBP{\alpha}$, and leptin significantly decreased upon treatment with BHHE (45%, 67%, and 35%) in comparison with non-treated control. These results suggest that BHHE inhibits adipocyte differentiation by blocking $PPAR{\gamma}$, C/$EBP{\alpha}$, and leptin gene expression in 3T3-L1 cells, resulting in reduced lipid accumulation, increased glycerol release, and intracellular triglycerides.

Process Optimization for Concentration and Stabilization of Recombinant Endoxylanase Expressed in Bacillus subtilis (Bacillus subtilis에서 발현된 재조합 Endoxylanase 농축과 안정화 공정의 최적화)

  • Choe, Yeong-Rok;Park, Jeong-Ha;;Kim, Yeong-Man;Gwon, Hyeon-Ju;Kim, Byeong-U
    • Microbiology and Biotechnology Letters
    • /
    • v.32 no.4
    • /
    • pp.322-327
    • /
    • 2004
  • A strong constitutive PJH promoter from Bacillus sp. was applied to overexpress the endoxylanase gene (639 bp) in Bacillus subtilis. The expression plasmid, pJHKJ4, was designed to contain the $P_{JH}$ promoter and open reading frame of endoxylanase including its own promoter. The plasmid was introduced into B. subtilis DB431 and the resulting transformant was grown on LB glucose medium. At the end of cultivation, the endoxylanase activity in the culture supernatant reached about 140 DIm!. The enzyme in the supernatant was concentrated by ultrafiltration (MW cut-off 10 kDa and 30 kDa) and ammonium sulfate precipitation. For the concentration of the enzyme, ultrafiltration was more efficient than 70% ammonium sulfate precipitation. The stabilization of concentrated enzyme solution at $50^{\circ}C$ was examined with various stabilizers such as NaCI, glycerol, polyethylene glycol, sorbitol, and $CaCI_2$. The most effective stabilizers were found to be NaCI and $CaCI_2$.

Minority report; Diketopiperazines and Pyocyanin as Quorum Sensing Signals in Pseudomonas aeruginosa (Minority report; Pseudomonas aeruginosa의 정족수 인식(쿼럼 센싱) 신호물질로써의 Diketopiperazines과 Pyocyanin)

  • Lee, Joon-Hee
    • Korean Journal of Microbiology
    • /
    • v.44 no.2
    • /
    • pp.85-92
    • /
    • 2008
  • Pseudomonas aeruginosa is an opportunistic human pathogen, causing a wide variety of infections including cystic fibrosis, microbial keratitis, and burn wound infections. The cell-to-cell signaling mechanism known as quorum sensing (QS) plays a key role in these infections and the QS systems of P. aeruginosa have been most intensively studied. While many literatures that introduce the QS systems of P. aeruginosa have mostly focused on two major acyl-homo serine lactone (acyl-HSL) QS signals, N-3-oxododecanoyl homoserine lactone (3OC12) and N-butanoyl homoserine lactone (C4), several new signal molecules have been discovered and suggested for their significant roles in signaling and virulence of P. aeruginosa. One of them is PQS (Pseudomonas quinolone signal; 2-heptyl-3-hydroxy-4-quinolone), which is now considered as a well-characterized major signal meolecule of P. aeruginosa. In addition, recent researches have also suggested some more putative signal molecules of P. aeruginosa, which are diketopiperazines (DKPs) and pyocyanin. DKPs are cyclic dipeptides and structurally diverse depending on what amino acids are involved in composition. Some DKPs from the culture supernatant of P. aeruginosa are suggested as new diffusible signal molecules, based on their ability to activate Vibrio fischeri LuxR biosensors that are previously considered specific for acyl-HSLs. Pyocyanin (1-hydroxy-5-methyl-phenazine), one of phenazine derivatives produced by P. aeruginosa is a characteristic blue-green pigment and redox-active compound. This has been recently suggested as a terminal signaling factor to upregulate some QS-controlled genes during stationary phase under the mediation of a transcription factor, SoxR. Here, details about these newly emerging signaling molecules of P. aeruginosa are discussed.

Hyperglycemia increases the expression levels of sclerostin in a reactive oxygen species- and tumor necrosis factor-alpha-dependent manner

  • Kang, Jiho;Boonanantanasarn, Kanitsak;Baek, Kyunghwa;Woo, Kyung Mi;Ryoo, Hyun-Mo;Baek, Jeong-Hwa;Kim, Gwan-Shik
    • Journal of Periodontal and Implant Science
    • /
    • v.45 no.3
    • /
    • pp.101-110
    • /
    • 2015
  • Purpose: Sclerostin, an inhibitor of Wnt/${\beta}$-catenin signaling, exerts negative effects on bone formation and contributes to periodontitis-induced alveolar bone loss. Recent studies have demonstrated that serum sclerostin levels are increased in diabetic patients and that sclerostin expression in alveolar bone is enhanced in a diabetic periodontitis model. However, the molecular mechanism of how sclerostin expression is enhanced in diabetic patients remains elusive. Therefore, in this study, the effect of hyperglycemia on the expression of sclerostin in osteoblast lineage cells was examined. Methods: C2C12 and MLO-Y4 cells were used in this study. In order to examine the effect of hyperglycemia, the glucose concentration in the culture medium was adjusted to a range of levels between 40 and 100 mM. Gene expression levels were examined by quantitative reverse transcription-polymerase chain reaction and Western blot assays. Top-Flash reporter was used to examine the transcriptional activity of the ${\beta}$-catenin/lymphoid enhanced factor/T-cell factor complex. Tumor necrosis factor-alpha ($TNF{\alpha}$) protein levels were examined with the enzyme-linked immunosorbent assay. The effect of reactive oxygen species on sclerostin expression was examined by treating cells with 1 mM $H_2O_2$ or 20 mM N-acetylcysteine. Results: The high glucose treatment increased the mRNA and protein levels of sclerostin. High glucose suppressed Wnt3a-induced Top-Flash reporter activity and the expression levels of osteoblast marker genes. High glucose increased reactive oxygen species production and $TNF{\alpha}$ expression levels. Treatment of cells with $H_2O_2$ also enhanced the expression levels of $TNF{\alpha}$ and sclerostin. In addition, N-acetylcysteine treatment or knockdown of $TNF{\alpha}$ attenuated high glucose-induced sclerostin expression. Conclusions: These results suggest that hyperglycemia increases sclerostin expression via the enhanced production of reactive oxygen species and $TNF{\alpha}$.

Transfection of Mesenchymal Stem Cells with the FGF-2 Gene Improves Their Survival Under Hypoxic Conditions

  • Song, Heesang;Kwon, Kihwan;Lim, Soyeon;Kang, Seok-Min;Ko, Young-Guk;Xu, ZhengZhe;Chung, Ji Hyung;Kim, Byung-Soo;Lee, Hakbae;Joung, Boyoung;Park, Sungha;Choi, Donghoon;Jang, Yangsoo;Chung, Nam-Sik;Yoo, Kyung-Jong;Hwang, Ki-Chul
    • Molecules and Cells
    • /
    • v.19 no.3
    • /
    • pp.402-407
    • /
    • 2005
  • Bone marrow mesenchymal stem cells (MSCs) have shown potential for cardiac repair following myocardial injury, but this approach is limited by their poor viability after transplantation. To reduce cell loss after transplantation, we introduced the fibroblast growth factor-2 (FGF-2) gene ex vivo before transplantation. The isolated MSCs produced colonies with a fibroblast-like morphology in 2 weeks; over 95% expressed CD71, and 28% expressed the cardiomyocyte-specific transcription factor, Nkx2.5, as well as ${\alpha}$-skeletal actin, Nkx2.5, and GATA4. In hypoxic culture, the FGF-2-transfected MSCs (FGF-2-MSCs) secreted increased levels of FGF-2 and displayed a threefold increase in viability, as well as increased expression of the anti-apoptotic gene, Bcl2, and reduced DNA laddering. They had functional adrenergic receptors, like cardiomyocytes, and exposure to norepinephrine led to phosphorylation of ERK1/2. Viable cells persisted 4 weeks after implantation of $5.0{\times}10^5$ FGF-2-MSCs into infarcted myocardia. Expression of cardiac troponin T (CTn T) and a voltage-gated $Ca^{2+}$ channel (CaV2.1) increased, and new blood vessels formed. These data suggest that genetic modification of MSCs before transplantation could be useful for treating myocardial infarction and end-stage cardiac failure.

Surface-Displayed IL-10 by Recombinant Lactobacillus plantarum Reduces Th1 Responses of RAW264.7 Cells Stimulated with Poly(I:C) or LPS

  • Cai, Ruopeng;Jiang, Yanlong;Yang, Wei;Yang, Wentao;Shi, Shaohua;Shi, Chunwei;Hu, Jingtao;Gu, Wei;Ye, Liping;Zhou, Fangyu;Gong, Qinglong;Han, Wenyu;Yang, Guilian;Wang, Chunfeng
    • Journal of Microbiology and Biotechnology
    • /
    • v.26 no.2
    • /
    • pp.421-431
    • /
    • 2016
  • Recently, poly-γ-glutamic acid synthetase A (pgsA) has been applied to display exogenous proteins on the surface of Lactobacillus casei or Lactococcus lactis, which results in a surface-displayed component of bacteria. However, the ability of carrying genes encoded by plasmids and the expression efficiency of recombinant bacteria can be somewhat affected by the longer gene length of pgsA (1,143 bp); therefore, a truncated gene, pgsA, was generated based on the characteristics of pgsA by computational analysis. Using murine IL-10 as an exogenous gene, recombinant Lactobacillus plantarum was constructed and the capacity of the surface-displayed protein and functional differences between exogenous proteins expressed by these strains were evaluated. Surface expression of IL-10 on both recombinant bacteria with anchorins and the higher expression levels in L. plantarum-pgsA'-IL-10 were confirmed by western blot assay. Most importantly, up-regulation of IL-1β, IL-6, TNF-α, IFN-γ, and the nuclear transcription factor NF-κB p65 in RAW264.7 cells after stimulation with Poly(I:C) or LPS was exacerbated after co-culture with L. plantarum-pgsA. By contrast, IL-10 expressed by these recombinant strains could reduce these factors, and the expression of these factors was associated with recombinant strains that expressed anchorin (especially in L. plantarum-pgsA'-IL-10) and was significantly lower compared with the anchorin-free strains. These findings indicated that exogenous proteins could be successfully displayed on the surface of L. plantarum by pgsA or pgsA', and the expression of recombinant bacteria with pgsA' was superior compared with bacteria with pgsA.

Vitamin D Inhibits Expression and Activity of Matrix Metalloproteinase in Human Lung Fibroblasts (HFL-1) Cells

  • Kim, Seo Hwa;Baek, Moon Seong;Yoon, Dong Sik;Park, Jong Seol;Yoon, Byoung Wook;Oh, Byoung Su;Park, Jinkyeong;Kim, Hui Jung
    • Tuberculosis and Respiratory Diseases
    • /
    • v.77 no.2
    • /
    • pp.73-80
    • /
    • 2014
  • Background: Low levels of serum vitamin D is associated with several lung diseases. The production and activation of matrix metalloproteinases (MMPs) may play an important role in the pathogenesis of emphysema. The aim of the current study therefore is to investigate if vitamin D modulates the expression and activation of MMP-2 and MMP-9 in human lung fibroblasts (HFL-1) cells. Methods: HFL-1 cells were cast into three-dimensional collagen gels and stimulated with or without interleukin-$1{\beta}$ (IL-$1{\beta}$) in the presence or absence of 100 nM 25-hydroxyvitamin D (25(OH)D) or 1,25-dihydroxyvitamin D ($1,25(OH)_2D$) for 48 hours. Trypsin was then added into the culture medium in order to activate MMPs. To investigate the activity of MMP-2 and MMP-9, gelatin zymography was performed. The expression of the tissue inhibitor of metalloproteinase (TIMP-1, TIMP-2) was measured by enzyme-linked immunosorbent assay. Expression of MMP-9 mRNA and TIMP-1, TIMP-2 mRNA was quantified by real time reverse transcription polymerase chain reaction. Results: IL-$1{\beta}$ significantly stimulated MMP-9 production and mRNA expression. Trypsin converted latent MMP-2 and MMP-9 into their active forms of MMP-2 (66 kDa) and MMP-9 (82 kDa) within 24 hours. This conversion was significantly inhibited by 25(OH)D (100 nM) and $1,25(OH)_2D$ (100 nM). The expression of MMP-9 mRNA was also significantly inhibited by 25(OH)D and $1,25(OH)_2D$. Conclusion: Vitamin D, 25(OH)D, and $1,25(OH)_2D$ play a role in regulating human lung fibroblast functions in wound repair and tissue remodeling through not only inhibiting IL-$1{\beta}$ stimulated MMP-9 production and conversion to its active form but also inhibiting IL-$1{\beta}$ inhibition on TIMP-1 and TIMP-2 production.