• Title/Summary/Keyword: Transcription Culture

Search Result 296, Processing Time 0.029 seconds

Chemical and Immunobiological Characterization of Lipopolysaccharides from Prevotella intermedia and Prevotella nigrescens (Prevotella intermedia와 Prevotella nigrescens의 세균내독소에 대한 연구;화학적 분석 및 면역생물학적 활성 평가)

  • Kim, Sung-Jo
    • Journal of Periodontal and Implant Science
    • /
    • v.34 no.2
    • /
    • pp.461-474
    • /
    • 2004
  • The purpose of this study was to assess some biological activities of lipopolysaccharides (LPSs) from P. intermedia and P. nigrescens. LPS was prepared by the standard hot phenol-water method. NO production was assayed by measuring the accumulation of nitrite in culture supernatants. $TNF-{\alpha}$ production was determined by enzyme-linked immunosorbent assay. Western blot analysis of iNOS and analysis of reverse transcription (RT)-PCR products were carried out. LPS from P. intermedia demonstrated higher KDO content than those from two stains of P. nigrescens. LPSs from P. intermedia and P. nigrescens were mitogenic for spleen cells of BALB/C mouse. The present study clearly shows that LPSs from P. intermedia and P. nigrescens fully induced iNOS expression and NO production in RAW264.7 cells in the absence of other stimuli. Moreover, LPSs from P. intermedia and P. nigrescens clearly induced $TNF-{\alpha}$ production in RAW264.7 cells. The biological activities of LPS from P. intermedia was found to be comparable to those of P. nigrescens LPS. The ability of LPSs from P. intermedia and P. nigrescens to promote the production of NO and $TNF-{\alpha}$ may be important in the pathogenesis of inflammatory periodontal disease.

Antiproliferative effect of gold(I) compound auranofin through inhibition of STAT3 and telomerase activity in MDA-MB 231 human breast cancer cells

  • Kim, Nam-Hoon;Park, Hyo Jung;Oh, Mi-Kyung;Kim, In-Sook
    • BMB Reports
    • /
    • v.46 no.1
    • /
    • pp.59-64
    • /
    • 2013
  • Signal transducer and activator of transcription 3 (STAT3) and telomerase are considered attractive targets for anticancer therapy. The in vitro anticancer activity of the gold(I) compound auranofin was investigated using MDA-MB 231 human breast cancer cells, in which STAT3 is constitutively active. In cell culture, auranofin inhibited growth in a dose-dependent manner, and N-acetyl-L-cysteine (NAC), a scavenger of reactive oxygen species (ROS), markedly blocked the effect of auranofin. Incorporation of 5-bromo-2'-deoxyuridine into DNA and anchorage-independent cell growth on soft agar were decreased by auranofin treatment. STAT3 phosphorylation and telomerase activity were also attenuated in cells exposed to auranofin, but NAC pretreatment restored STAT3 phosphorylation and telomerase activity in these cells. These findings indicate that auranofin exerts in vitro antitumor effects in MDA-MB 231 cells and its activity involves inhibition of STAT3 and telomerase. Thus, auranofin shows potential as a novel anticancer drug that targets STAT3 and telomerase.

Suppression of Human Fibrosarcoma Cell Metastasis by Phyllanthus emblica Extract in Vitro

  • Yahayo, Waraporn;Supabphol, Athikom;Supabphol, Roongtawan
    • Asian Pacific Journal of Cancer Prevention
    • /
    • v.14 no.11
    • /
    • pp.6863-6867
    • /
    • 2013
  • Phyllanthus emblica (PE) is known to exhibit various pharmacological properties. This study aimed to evaluate the antimetastatic potential of a PE aqueous extract. Cytotoxicity to human fibrosarcoma cells, HT1080, was determined by viability assay using the 3-(4,5-dimethylthiazol,2-yl)-2,5-diphenyltetrazolium bromide (MTT) reagent. Cell migration and invasion were investigated using chemotaxis chambers containing membranes precoated with collagen IV and Matrigel, respectively. Cell attachment onto normal surfaces of cell culture plates was tested to determine the cell-adhesion capability. The molecular mechanism of antimetastatic activity was assessed by measuring the gene expression of matrix metalloproteinases, MMP2, and MMP9, using reverse transcription-polymerase chain reaction (RT-PCR) assay. The mRNA levels of both genes were significantly down-regulated after pretreatment with PE extract for 5 days. Our findings show the antimetastatic function of PE extract in reducing cell proliferation, migration, invasion, and adhesion in both dose- and time-dependent manners, especially growth arrest with low $IC_{50}$ value. A decrease in the expression of both MMP2 and MMP9 seems to be the cellular mechanism for antimetastasis in this case. There is a high potential to use PE extracts clinically as an optional adjuvant therapeutic drug for therapeutic intervention strategies in cancer therapy or chemoprevention.

Antimelanogenic Effect of Taurine in Murine Melanoma B16F10 Cells (B16F10 Murine Melanoma 세포에서 멜라닌생성억제에 대한 타우린의 효과)

  • Joung, Hyo-Sook;Song, Kyung-Hee;Kim, An-Keun
    • YAKHAK HOEJI
    • /
    • v.51 no.5
    • /
    • pp.350-354
    • /
    • 2007
  • Taurine has been shown to be tissue-protective against oxidant-induced injury and is a powerful regulator of the immune system. However, there is no study on the antimelanogenic effect of taurine. In this study, we investigated the whitening effect of taurine in B16F10 mouse melanoma cells. Cell viability was measured by MTT assay. We examined melanin contents and tyrosinase activity according to time and concentration. Extracellular signal regulated kinase (ERK) is an important regulator of melanogenesis. It has been reported that activated ERK induced microphthalmia associated transcription factor (MITF) phosphorylation and its subsequent degradation and thus reduced melanin synthesis. In our B16F10 cell culture system, taurine led to decrease melanin contents by 21% at 48 hr. We then observed taurine effects on ERK-P, MITF and tyrosinase by Western blot. ERK was activated at 18 hr and 24 hr, whereas MITF reduced. We could not observe any differences in the levels of tyrosinase. These results suggested that taurine inhibited melanogenesis by ERK signal pathway via MITF degradation. We expect that taurine has potential skin whitening agents in cosmetics.

Effect of Gleditsiae Spina on Proliferation of Transplanted-L1210 cells in Mice (조각자가 생쥐에 이식된 L1210 세포의 증식에 미치는 영향)

  • 조선경;은재순;김대근;소준노;오찬호;송정모
    • The Journal of Korean Medicine
    • /
    • v.22 no.4
    • /
    • pp.37-44
    • /
    • 2001
  • Objectives : Cellular death by apoptosis is an active process, depending on gene transcription and protein synthesis. It was reported that nitric oxide can induce apoptosis in several cancer cell-lines. We have previously observed that proliferation of Ll210 cells was inhibited by the administration of Gleditsiae Spina water extract (GE). In this present study, the mechanism of inhibitory action on the proliferation of L l210 cells was examined. Methods : The cell proliferation was determined by MTT assay and DNA fragmentation was determined by a flow cytometry. Results : The administration of GE decreased proliferation of L1210 cells and enhanced DNA fragmentation in vivo system. DNA fragmentation of L1210 cells was enhanced by co-culture of peritoneal macrophages obtained from GE-administered mice in vitro and it was partly inhibited by L-NMMA, nitric oxide synthetase inhibitor. In addition, GE increased nitric oxide production from peritoneal macrophages of L1210-transplanted mice. Conclusions : These results suggest that the inhibitory action of GE on proliferation of transplanted-L1210 cells is partly caused by an induction of apoptosis via production of nitric oxide in macrophages.

  • PDF

MOK, a Pharmacopuncture Medicine, Reduces Inflammatory Response through Inhibiting the Proinflammatory Cytokine Production in LPS-stimulated Mouse Peritoneal Macrophages

  • Hwang, Ji Hye;Hwang, Min Sub;Park, Yong-ki
    • Journal of Acupuncture Research
    • /
    • v.34 no.1
    • /
    • pp.11-21
    • /
    • 2017
  • Objectives : In this study, we investigated the anti-inflammatory and anti-oxidative effects of MOK, a pharmacopuncture medicine, in lipopolysaccharide (LPS)-stimulated mouse peritoneal macrophages. Methods : Peritoneal macrophages were isolated from ICR mice. Primary macrophages were treated with MOK extract (1.25, 2.5, 5, 10, and 20 mg/ml) for 30 min and then stimulated with LPS ($1{\mu}g/ml$) for the indicated times. Cytotoxicity was measured using MTT and LDH assays. Nitric oxide (NO) production in culture supernatants was measured using the Griess assay. The mRNA expression of iNOS, COX-2, proinflammatory cytokines (TNF-${\alpha}$, IL-$1{\beta}$, and IL-6) and antioxidant enzymes (HO-1 and MnSOD) was measured by RT-PCR. Results : Treatment with MOK extract (2.5, 5, and 10 mg/ml) significantly decreased LPS-induced NO production in peritoneal macrophages through inhibition of iNOS expression. The expression of COX-2, TNF-${\alpha}$, IL-$1{\beta}$, and IL-6 mRNA was also decreased in LPS-stimulated macrophages upon treatment with MOK extract. MOK treatment also increased the expression of HO-1 and MnSOD mRNA in macrophages. Conclusion : These results indicate that MOK exerts anti-inflammatory and antioxidant effects by regulating the transcription levels of inflammatory mediators and antioxidant proteins in activated macrophages.

Development of a Virus Concentration Method and its Application for the Detection of Noroviruses in Drinking Water in China

  • Liu, Junyi;Wu, Qingping;Kou, Xiaoxia
    • Journal of Microbiology
    • /
    • v.45 no.1
    • /
    • pp.48-52
    • /
    • 2007
  • A new procedure for the concentration of nonoviruses from water samples has been developed. This procedure (calcium flocculation-citrate dissolution method) uses the following steps: virus flocculation formed by treatment with 1 M $CaCl_2$ and 1 M $Na_2HPO_4$, virus release by sodium citrate dissolution (0.3 M Na citrate, pH 3.5), and virus re-concentration by ultrafiltration. When reverse transcription (RT)-PCR was performed after the procedure, the overall detection sensitivity for seeded noroviruses in a one liter drinking water sample was as low as 1 RT-PCR unit, which is equal to a $10^{-6}$ dilution of the virus sample. This approach showed at least a 5-fold-higher sensitivity than the current method with its three steps of adsorption-elution-concentration. The newly developed procedure was used to test different brands of bottled drinking water from China for putative contamination with noroviruses. A total of 144 samples were analyzed; all of the samples were negative for norovirus specific nucleic acids.

Curcumin suppresses the production of interleukin-6 in Prevotella intermedia lipopolysaccharide-activated RAW 264.7 cells

  • Kim, Sung-Jo
    • Journal of Periodontal and Implant Science
    • /
    • v.41 no.3
    • /
    • pp.157-163
    • /
    • 2011
  • Purpose: Curcumin is known to exert numerous biological effects including anti-inflammatory activity. In this study, we investigated the effects of curcumin on the production of interleukin-6 (IL-6) by murine macrophage-like RAW 264.7 cells stimulated with lipopolysaccharide (LPS) from Prevotella intermedia, a major cause of inflammatory periodontal disease, and sought to determine the underlying mechanisms of action. Methods: LPS was prepared from lyophilized P. intermedia ATCC 25611 cells by the standard hot phenol-water method. Culture supernatants were collected and assayed for IL-6. We used real-time polymerase chain reaction to detect IL-6 mRNA expression. $I{\kappa}B-{\alpha}$ degradation, nuclear translocation of NF-${\kappa}B$ subunits, and STAT1 phosphorylation were characterized via immunoblotting. DNA-binding of NF-${\kappa}B$ was also analyzed. Results: Curcumin strongly suppressed the production of IL-6 at both gene transcription and translation levels in P. intermedia LPS-activated RAW 264.7 cells. Curcumin did not inhibit the degradation of $I{\kappa}B-{\alpha}$ induced by P. intermedia LPS. Curcumin blocked NF-${\kappa}B$ signaling through the inhibition of nuclear translocation of NF-${\kappa}B$ p50 subunit. Curcumin also attenuated DNA binding activity of p50 and p65 subunits and suppressed STAT1 phosphorylation. Conclusions: Although further study is required to explore the detailed mechanism of action, curcumin may contribute to blockade of the host-destructive processes mediated by IL-6 and appears to have potential therapeutic values in the treatment of inflammatory periodontal disease.

Aging and UV Irradiation Related Changes of Gene Expression in Primary Human Keratinocytes

  • Lee, Ok Joo;Lee, Sung-Young;Park, Jae-Bong;Lee, Jae-Yang;Kim, Jong-Il;Kim, Jaebong
    • Genomics & Informatics
    • /
    • v.3 no.2
    • /
    • pp.66-72
    • /
    • 2005
  • The epidermis is a physiological barrier to protect organisms against environment. During the aging process, skin tissues undergo various changes including morphological and functional changes. The transcriptional regulation of genes is part of cellular reaction of aging process. In order to examine the changes of gene expression during the aging process, we used the primary cell culture system of human keratinocytes. Since UV radiation is the most important environmental skin aggressor, causing skin cancer and other problems including premature skin aging, we examined the changes of gene expression in human keratinocytes after UV irradiation using oligonucleotide microarray containing over 10,000 genes. We also compared the gene expression patterns of the senescent and UV treated cells. Expression of the variety of genes related to transcription factors, cell cycle regulation, immune response was altered in human keratinocytes. Some of down-regulated genes are represented in both senescent and UV treated cells. The results may provide a new view of gene expression following UVB exposure and aging process in human keratinocytes.

Protective Effects of Verapamil against H2O2-Induced Apoptosis in Human Lens Epithelial Cells

  • Wang, Zhuo;Wang, Dan;Li, Yan;Zhang, Xiuli
    • Biomolecules & Therapeutics
    • /
    • v.22 no.6
    • /
    • pp.553-557
    • /
    • 2014
  • Verapamil is used in the treatment of hypertension, angina pectoris, and atrial fibrillation. Recently, several studies have demonstrated that verapamil increased the optic nerve head blood flow and improved the retrobulbar circulation. All these show that verapamil is potentially useful for ophthalmic treatment. Thus, the aim of this study is to investigate whether verapamil could protect human lens epithelial cell (HLEC) from oxidative stress induced by $H_2O_2$ and the cellular mechanism underlying this protective function. The viability of HLEC was determined by the MTT assay and apoptotic cell death was analyzed by Hoechst 33258 staining. Moreover, Caspase-3 expression was detected by immunocytochemistry and flow cytometry analysis. We also detected Caspase-3 mRNA expression by reverse-transcription-polymerase chain reaction and the GSH content in cell culture. The results showed that oxidative stress produced significant cell apoptotic death and it was reduced by previous treatment with the verapamil. Verapamil was effective in reducing HLEC death mainly through reducing the expression level of apoptosis-related proteins, caspase-3, and increasing glutathione content. Therefore, it was suggested that verapamil was effective in reducing HLEC apoptosis induced by $H_2O_2$.