Established in 2006 as the forward integration effort by Taesung Industry, the major cosmetic packaging company, TONYMOLY has phenomenally grown to one of the major cosmetic brand companies in the submarket called, 'one brand-shop' of cosmetic market since 2008, after overcoming the crisis of 'going out of business' in a couple of early years. Within a relatively short period of time, TONYMOLY's performances have dramatically improved in terms of metrics such as growth in sales revenue, the number of stores, the average sales per store, transaction value per customer, the number of monthly transactions, the number of membership-based customers, and overseas sales. In this case study, we have examined TONYMOLY's recent marketing activities which may explain the plausible reasons behind the substantial growth of a small but smart cosmetic company. Above all, the first key success factor of TONYMOLY would be found in its adherence to the clear philosophy of the customer value proposition and/or the differentiated position of TONYMOLY as a brand of providing value. Second, this brand concept of value was first penetrated and welcomed among the foothold customer target group of mid and late teens with appropriate products, while the target groups were later expanded into the age group of twenties along with expansion of relevant products. Third, its differentiation efforts have been concrete and meaningful by utilizing unique ingredients in its product development and marketing efforts, unique fun packaging, and continuously introducing new hit-selling products as well as managing steady-selling products. Fourth, TONYMOLY has been smart enough to use its limited marketing money efficiently and effectively in its marketing communication activities. Viral marketing, PPL, and concentrated media planning and execution turned out to produce effective and efficient market-based performances such as awareness, word-of-mouth, and sales. Lastly, the marketing leadership of CEO and top management, emphasizing communications and interactions, was confirmed in the relationship quality with and trust level of its franchisees and internal employees. These key success factors may explain the recent phenomenal market performances of TONYMOLY. Despite recent successes, the major issues are presented for TONYMOLY to consider for maintaining its sustainable advantages and growth. The first issue concerns TONYMOLY's choice of growth philosophy between product/brand-centric marketing and customer-centric marketing. The second challenging issue relates to how TONYMOLY can cope with 'growing pains' plausibly accompanied with the rapid growth.
본 연구에서는 기업간 거래 관계의 품질과 강도를 결정함에 있어서 제공조건이 중요한지, 아니면 상대하는 사람이 중요한지 혹은 관계적 특징이 중요한지 여부를 검토하고자 하였다. 이를 위해 주요 선행 특성요인을 제공특성(제공조건), 대인적 특성(상대업체 경영자의 유사성, 전문성), 관계 특성(관계기간, 협력, 의존성)으로 분류하고, 이들 특성이 관계품질과 강도에 어떤 영향을 미치는지를 로칼수출업체-섬유염색나염업체 거래관계 상황에서 실증적으로 분석하였다. 실증분석 결과, 관계기간을 제외한 모든 특성변수는 관계품질 변수(신뢰와 몰입)에 대해 직접적인 영향을 줄 뿐 아니라 관계강도에 대해서도 간접적인 영향을 주고 있음을 확인할 수 있었다. 특히 상대업체 경영자로부터 인식하는 유사성은 관계품질 형성에 강력한 영향을 미치는 것으로 나타났다. 그리고 기업간 의존성은 관계품질이나 관계강도에 대해 유의한 영향을 미치고 있어 기업간 거래에서 자원의존이 중요한 역할을 하고 있음을 확인할 수 있었다. 또한 관계강도에 대해서는 관계품질과 같은 정서적 판단이 유의하게 작용하며, 특히 신뢰변수는 제공특성과 같은 수단적·경제적인 변수에 비해 훨씬 강력한 영향을 미치고 있음을 발견하였다.
본 연구는 생성형 대규모 언어 모델을 활용하여 텍스트에서 정보를 추출하기 위한 한글 데이터셋 구축 방법을 탐구한다. 현대 사회에서는 혼합된 정보가 빠르게 유포되며, 이를 효과적으로 분류하고 추출하는 것은 의사결정 과정에 중요하다. 그러나 이에 대한 학습용 한국어 데이터셋은 아직 부족하다. 이를 극복하기 위해, 본 연구는 생성형 대규모 언어 모델을 사용하여 텍스트 기반 제로샷 학습(zero-shot learning)을 이용한 정보 추출을 시도하며, 이를 통해 목적에 맞는 한국어 데이터셋을 구축한다. 본 연구에서는 시스템-지침-소스입력-출력형식의 프롬프트 엔지니어링을 통해 언어 모델이 원하는 결과를 출력하도록 지시하며, 입력 문장을 통해 언어 모델의 In-Context Learning 특성을 활용하여 데이터셋을 구축한다. 생성된 데이터셋을 기존 데이터셋과 비교하여 본 연구 방법론을 검증하며, 관계 정보 추출 작업의 경우 KLUE-RoBERTa-large 모델 대비 25.47% 더 높은 성능을 달성했다. 이 연구 결과는 한국어 텍스트에서 지식 요소를 추출하는 가능성을 제시함으로써 인공지능 연구에 도움을 줄 것으로 기대된다. 더욱이, 이 방법론은 다양한 분야나 목적에 맞게 활용될 수 있어, 다양한 한국어 데이터셋 구축에 잠재력을 가진다고 볼 수 있다.
대한민국은 지진 판의 경계로부터 멀리 떨어진 지역에 있으며, 이러한 지역에서 발생하는 판 내부 지진은 판 경계부 지진과 비교하면 일반적으로 규모가 작고 발생빈도도 낮다. 그럼에도 불구하고 과거 2년부터 1904년 사이 한반도에서 발생했던 지진과 최근 한반도 지진을 관측한 이래에 발생한 지진을 조사 및 분석한 결과 진도 규모 9까지 이르는 것으로 나타났다. 본 논문에서는 한반도에서 발생한 지진과 통계적 자기 유사성과의 관계를 분석하기 위해서 국립기상연구소에서 발표한 「한반도 역사지진 기록 (2년~1904년)」을 이용한다. 또한 본 논문을 통해서 해결한 문제는 한반도에서 발생한 지진데이터와 통계적 자기 유사성과 시각화의 관계 연구를 처음으로 규명하였으며, 그 결과 한반도 지진의 자기 유사성 정도를 판단하는 3가지 정량적인 추정방법으로 측정한 결과 자기 유사성 파라메터 H 값(0.5 < H < 1)이 0.8이상으로 자기 유사성 정도가 높은 것으로 나타났다. 그리고 그래프의 시각화를 통해 지진이 어느 지역에서 많이 발생했는지를 쉽게 파악할 수 있고, 향후 지진 발생시 피해를 예측하고 재산과 인명 피해를 최소화할 수 있는 예측 시스템 개발과 지진 데이터 분석 및 모델링 연구에 활용될 수 있을 것으로 보인다. 뿐만아니라 본 연구결과를 토대로 자기 유사성 프로세스는 지진활동의 패턴과 통계적 특성을 이해하고, 유사한 지진 사건을 그룹화하고 분류하는데 도움을 줄 수 있으며, 지진 활동에 대한 예측, 지진 위험 평가 및 지진 공학 관련 연구에 활용될 것으로 예상된다.
최근 세계 각국은 온실가스 배출을 규제하기 위해 전과정평가(LCA, Life Cycle Assessment)를 도입하려는 움직임을 보이고 있다. 전기차 전과정평가는 차량의 전체 수명주기에 걸쳐 발생하는 온실가스 배출량을 측정하고 평가하는 수단이다. 전과정평가 결과의 신뢰성을 높이기 위해서는 전기차 부품별로 신뢰성 있는 데이터가 필요하다. 이를 위해 최근 블록체인 기술을 적용한 전과정평가 모델에 대한 연구들이 수행되었다. 그러나 기존 연구들은 주요 제품 정보들이 다른 참여자들에게 그대로 노출되어 프라이버서 보호가 되지 않는 문제가 있고 부품데이터 정보가 업데이트될 때마다 트랜잭션 형태로 블록체인 원장에 기록해야 해서 비효율적이다. 따라서 본 논문에서는 효율적으로 전기차 차량부품 데이터를 수집하고 유효성을 검증하기 위해 전과정평가를 위한 DID 기반의 데이터수집 모델을 제안한다. 제안하는 모델은 수집된 데이터의 유효성과 무결성을 보장하며 블록체인 원장에는 사용자 인증 정보만 공유되어 데이터의 무분별한 노출을 방지하고 데이터의 출처를 효율적으로 검증 및 업데이트할 수 있다.
다양한 서비스가 등장으로 인해 스펙트럼 부족 문제가 가속하됨에 따라, 면허 대역에서 통신하던 사용자들을 비면허 대역에서 통신하는 NR-U(New Radio-Unlicensed)가 등장하였다. 하지만 NR-U 네트워크 사용자로 인해 동일한 비면허 대역에서 통신하는 Wi-Fi 네트워크 사용자의 성능이 감소하게 된다. 본 논문에서는 NR-U 네트워크 사용자와 WiFi 네트워크 사용자가 공존해있는 비면허 대역의 처리량과 비면허 대역의 사용에 대한 공평성을 동시에 최대화하는 것을 목표로 한다. 먼저 비면허 대역에서 전송률 분할 다중 접속 기술을 활용한 NR-U 네트워크의 합-전송 속도 (Sum of Rate)를 최대화하기 위해 강화 학습의 몬테 카를로 정책 하강법(Monte Carlo Policy Gradient)을 활용한 최적의 전력 할당 기법을 제안하였다. 그 뒤, 동일한 비면허 대역에서 NR-U 네트워크와 WiFi 네트워크의 공존을 위해 시스템 처리량과 공정성을 동시에 최대화할 수 있는 게임 이론의 순차적 라이파 협상 해법(Sequential Raiffa Bargaining Solution)을 활용한 채널 점유 시간 분할 알고리즘을 제안하였다. 시뮬레이션 결과에서 동일한 전력 할당 기법을 사용하였을 때, 본 논문에서 제안한 전송률 분할 다중 접속 기술이 기존의 다중 접속 기술들보다 더 빠른 합-전송속도를 보임을 확인하였다. 또한 비면허 대역 네트워크의 전송량과 공평성을 비교해본 결과 본 논문의 순차적 라이파 협상 해법을 활용한 채널 점유 시간 분할 알고리즘이 타 알고리즘보다 처리량과 공정성을 동시에 만족함을 입증하였다.
본 논문에서는 정보·컴퓨터 표시과목의 임용시험에서 프로그래밍 문항이 프로그래밍 능력을 겸비한 교사 선발에 적합한지 연구하였다. 최근 5년 동안의 문항을 분석한 결과, 프로그래밍 문항의 평균 배점이 교과내용학 총점의 38%(20.8점)로 높게 나타났다. 기출문항에서 프로그래밍 문항의 배점 비중이 높은 과목은 프로그래밍과 자료구조로 확인되었으며, 이들의 평가영역별 배점분포를 분석한 결과 각각 0%~47%, 0%~53%로 영역별 편차가 큰 것으로 나타났다. 본 논문에서는 프로그래밍 문항이 교육 현장에서 요구하는 교사 선발에 적합한지 교사 31명을 대상으로 설문조사를 실시하였다. 임용시험의 프로그래밍 문항에서 평가할 내용에 대한 응답으로 컴퓨팅 사고력이 58%로 가장 높게 나타났다. 문항의 적합도에 대한 응답에서 문제해결력이 5점 척도 기준에서 2.84로 가장 높았으나 전반적으로 적합도가 낮은 것으로 나타났다. 프로그래밍 문항 출제를 위해 적합한 언어로 C언어와 파이썬의 응답이 각각 55%, 45%로 나타났다. 이 결과에서 교사들은 기존의 C언어 외에 파이썬 선호도가 매우 높은 것을 확인하였다. 본 연구에서는 이러한 연구결과를 바탕으로 프로그래밍 문항 출제에 대한 개선방안을 제안하였다.
본 논문은 사용자 독립방식의 블록체인 기부시스템인 Cherry system을 소개하고 있다. 이는 기부자가 기부를 하게 되면 가상계좌를 통해 수혜자의 통장으로 전달되는 절차라서 사용자 입장에서는 기존의 기부금 전달 방식과 차이가 없다. 다만 블록체인 내부에서는 사용자 ID에 따른 가상화폐인 체리 포인트를 매칭 방식으로 발행하여 수혜자에게 전달하면서, 모든 거래와 사용 내용을 블록체인에서 관리하는 방식이다. 이런 방법을 채택함으로 Typical transaction 상황에서 1,000TPS 이상을 나타내고, 21.3초 이내에 서비스 완료되는 블록체인 성능의 개선이 있었다. 본 시스템에서는 권한 자동 제어 알고리즘을 적용함으로써 stake에 따른 권한은 2개월이 경과하면 0.3으로 크게 감소하여 권한 집중화를 자동으로 제어할 수 있었다. 또한 개인 ID 별로 기부금 장부에 타임 스탬프 추적기능을 추가함으로써 마이크로 트래킹이 가능하도록 설계되었고, 이를 통해 기부금 사용의 투명성을 개선하였다. 서비스 관점에서 기존의 블록체인 기부시스템들은 제한된 기부금 전달 방식으로 처리되었던 것을 사용자 독립방식을 적용함으로써 다양한 형태로 기부금을 전달하게 하여 사용자 편의성을 크게 개선하였다.
소프트웨어 공학 영역에 인공지능의 접목은 큰 화두 중 하나이다. 전 세계적으로 1) 인공지능을 통한 소프트웨어 공학, 2) 소프트웨어 공학을 통한 인공지능 두 가지 방향으로 활발히 연구되고 있다. 그 중 소프트웨어 공학에 인공지능을 접목하여 나쁜 코드 영역을 식별하고 해당 부분을 리팩토링하는 연구가 진행되고 있다. 해당 연구에서 인공지능이 나쁜 코드 요소의 패턴을 잘 학습하기 위해서는 학습하려는 나쁜 코드 요소가 라벨링 된 데이터셋이 필요하다. 문제는 데이터셋이 부족할뿐더러, 자체적으로 수집한 데이터셋의 정확도는 신뢰할 수 없다. 이를 해결하기 위해 코드 데이터 수집 시 전체 코드가 아닌 높은 복잡도를 가진 코드 모듈 영역을 대상으로만 나쁜 코드 데이터를 수집한다. 이후 수집한 데이터셋을 CodeBERT 모델의 전이 학습하여 코드 공통 취약점을 탐색하는 방법을 제안한다. 해당 데이터셋을 통해 CodeBERT 모델이 코드의 공통 취약점 패턴을 더 잘 학습할 수 있다. 이를 통해 전통적인 방법보다 인공지능 모델을 이용해 코드를 분석하고 공통 취약점 패턴을 더 정확하게 식별할 수 있을 것으로 기대한다.
최근에는 협동 로봇의 데이터를 활용한 다양한 결함진단 연구가 수행되고 있다. 협동 로봇의 결함진단을 수행하는 기존 연구들은 기존 연구의 학습 데이터는 미리 정의된 기기의 동작을 가정하고 수집한 정적 데이터를 사용한다. 따라서 결함진단 모델은 학습한 데이터 패턴에 대한 의존성이 높아지는 한계가 있다. 또한 단일 모터를 사용한 실험으로 다관절이 동작하는 협동 로봇의 특성을 반영한 진단이 이루어지지 못했다는 한계가 있다. 본 논문에서는 앞서 언급한 두 가지 한계점을 해결할 수 있는 LSTM 진단 모델을 제안한다. 제안하는 방법은 단일 축 및 다중 축 작업 환경에서의 진동 및 전류 데이터의 상관분석을 사용하여 정상 대표 패턴을 선정하고, 정상 대표 패턴과의 차이를 통해 잔차 패턴을 생성한다. 생성된 잔차 패턴을 입력으로 축별 기어 마모 진단을 수행할 수 있는 LSTM 모델을 생성한다. 해당 결함진단 모델은 동작별 대표 패턴을 통해 모델의 학습 데이터 패턴에 대한 의존성을 낮출 수 있을 뿐 아니라 다중 축 동작 수행 시 발생하는 결함을 진단할 수 있다. 마지막으로, 내부 및 외부 데이터의 특성을 모두 반영하여 결함진단 성능을 개선한 결과 98.57%의 높은 진단 성능을 보였다.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.