• 제목/요약/키워드: Transactions

검색결과 45,732건 처리시간 0.053초

TONYMOLY Cosmetic Company: A Small but Smart Marketing Player

  • Song, Ji-Hee;Lee, Sungho
    • Asia Marketing Journal
    • /
    • 제15권1호
    • /
    • pp.169-188
    • /
    • 2013
  • Established in 2006 as the forward integration effort by Taesung Industry, the major cosmetic packaging company, TONYMOLY has phenomenally grown to one of the major cosmetic brand companies in the submarket called, 'one brand-shop' of cosmetic market since 2008, after overcoming the crisis of 'going out of business' in a couple of early years. Within a relatively short period of time, TONYMOLY's performances have dramatically improved in terms of metrics such as growth in sales revenue, the number of stores, the average sales per store, transaction value per customer, the number of monthly transactions, the number of membership-based customers, and overseas sales. In this case study, we have examined TONYMOLY's recent marketing activities which may explain the plausible reasons behind the substantial growth of a small but smart cosmetic company. Above all, the first key success factor of TONYMOLY would be found in its adherence to the clear philosophy of the customer value proposition and/or the differentiated position of TONYMOLY as a brand of providing value. Second, this brand concept of value was first penetrated and welcomed among the foothold customer target group of mid and late teens with appropriate products, while the target groups were later expanded into the age group of twenties along with expansion of relevant products. Third, its differentiation efforts have been concrete and meaningful by utilizing unique ingredients in its product development and marketing efforts, unique fun packaging, and continuously introducing new hit-selling products as well as managing steady-selling products. Fourth, TONYMOLY has been smart enough to use its limited marketing money efficiently and effectively in its marketing communication activities. Viral marketing, PPL, and concentrated media planning and execution turned out to produce effective and efficient market-based performances such as awareness, word-of-mouth, and sales. Lastly, the marketing leadership of CEO and top management, emphasizing communications and interactions, was confirmed in the relationship quality with and trust level of its franchisees and internal employees. These key success factors may explain the recent phenomenal market performances of TONYMOLY. Despite recent successes, the major issues are presented for TONYMOLY to consider for maintaining its sustainable advantages and growth. The first issue concerns TONYMOLY's choice of growth philosophy between product/brand-centric marketing and customer-centric marketing. The second challenging issue relates to how TONYMOLY can cope with 'growing pains' plausibly accompanied with the rapid growth.

  • PDF

로칼수출업체에 대한 특성인식이 관계품질과 강도에 미치는 영향 - 제공특성, 대인적특성, 관계특성을 중심으로 - (Exploring Factors Affecting Relationship Quality and Strength in Local Exporters)

  • 윤만희
    • Asia Marketing Journal
    • /
    • 제9권3호
    • /
    • pp.33-73
    • /
    • 2007
  • 본 연구에서는 기업간 거래 관계의 품질과 강도를 결정함에 있어서 제공조건이 중요한지, 아니면 상대하는 사람이 중요한지 혹은 관계적 특징이 중요한지 여부를 검토하고자 하였다. 이를 위해 주요 선행 특성요인을 제공특성(제공조건), 대인적 특성(상대업체 경영자의 유사성, 전문성), 관계 특성(관계기간, 협력, 의존성)으로 분류하고, 이들 특성이 관계품질과 강도에 어떤 영향을 미치는지를 로칼수출업체-섬유염색나염업체 거래관계 상황에서 실증적으로 분석하였다. 실증분석 결과, 관계기간을 제외한 모든 특성변수는 관계품질 변수(신뢰와 몰입)에 대해 직접적인 영향을 줄 뿐 아니라 관계강도에 대해서도 간접적인 영향을 주고 있음을 확인할 수 있었다. 특히 상대업체 경영자로부터 인식하는 유사성은 관계품질 형성에 강력한 영향을 미치는 것으로 나타났다. 그리고 기업간 의존성은 관계품질이나 관계강도에 대해 유의한 영향을 미치고 있어 기업간 거래에서 자원의존이 중요한 역할을 하고 있음을 확인할 수 있었다. 또한 관계강도에 대해서는 관계품질과 같은 정서적 판단이 유의하게 작용하며, 특히 신뢰변수는 제공특성과 같은 수단적·경제적인 변수에 비해 훨씬 강력한 영향을 미치고 있음을 발견하였다.

  • PDF

생성형 대규모 언어 모델과 프롬프트 엔지니어링을 통한 한국어 텍스트 기반 정보 추출 데이터셋 구축 방법 (A Study on Dataset Generation Method for Korean Language Information Extraction from Generative Large Language Model and Prompt Engineering)

  • 정영상;지승현;권다롱새
    • 정보처리학회논문지:소프트웨어 및 데이터공학
    • /
    • 제12권11호
    • /
    • pp.481-492
    • /
    • 2023
  • 본 연구는 생성형 대규모 언어 모델을 활용하여 텍스트에서 정보를 추출하기 위한 한글 데이터셋 구축 방법을 탐구한다. 현대 사회에서는 혼합된 정보가 빠르게 유포되며, 이를 효과적으로 분류하고 추출하는 것은 의사결정 과정에 중요하다. 그러나 이에 대한 학습용 한국어 데이터셋은 아직 부족하다. 이를 극복하기 위해, 본 연구는 생성형 대규모 언어 모델을 사용하여 텍스트 기반 제로샷 학습(zero-shot learning)을 이용한 정보 추출을 시도하며, 이를 통해 목적에 맞는 한국어 데이터셋을 구축한다. 본 연구에서는 시스템-지침-소스입력-출력형식의 프롬프트 엔지니어링을 통해 언어 모델이 원하는 결과를 출력하도록 지시하며, 입력 문장을 통해 언어 모델의 In-Context Learning 특성을 활용하여 데이터셋을 구축한다. 생성된 데이터셋을 기존 데이터셋과 비교하여 본 연구 방법론을 검증하며, 관계 정보 추출 작업의 경우 KLUE-RoBERTa-large 모델 대비 25.47% 더 높은 성능을 달성했다. 이 연구 결과는 한국어 텍스트에서 지식 요소를 추출하는 가능성을 제시함으로써 인공지능 연구에 도움을 줄 것으로 기대된다. 더욱이, 이 방법론은 다양한 분야나 목적에 맞게 활용될 수 있어, 다양한 한국어 데이터셋 구축에 잠재력을 가진다고 볼 수 있다.

한반도에서 발생한 지진의 통계적 자기 유사성 분석 및 시각화 (Stochastic Self-similarity Analysis and Visualization of Earthquakes on the Korean Peninsula)

  • 황재민;임지영;정해덕
    • 정보처리학회논문지:소프트웨어 및 데이터공학
    • /
    • 제12권11호
    • /
    • pp.493-504
    • /
    • 2023
  • 대한민국은 지진 판의 경계로부터 멀리 떨어진 지역에 있으며, 이러한 지역에서 발생하는 판 내부 지진은 판 경계부 지진과 비교하면 일반적으로 규모가 작고 발생빈도도 낮다. 그럼에도 불구하고 과거 2년부터 1904년 사이 한반도에서 발생했던 지진과 최근 한반도 지진을 관측한 이래에 발생한 지진을 조사 및 분석한 결과 진도 규모 9까지 이르는 것으로 나타났다. 본 논문에서는 한반도에서 발생한 지진과 통계적 자기 유사성과의 관계를 분석하기 위해서 국립기상연구소에서 발표한 「한반도 역사지진 기록 (2년~1904년)」을 이용한다. 또한 본 논문을 통해서 해결한 문제는 한반도에서 발생한 지진데이터와 통계적 자기 유사성과 시각화의 관계 연구를 처음으로 규명하였으며, 그 결과 한반도 지진의 자기 유사성 정도를 판단하는 3가지 정량적인 추정방법으로 측정한 결과 자기 유사성 파라메터 H 값(0.5 < H < 1)이 0.8이상으로 자기 유사성 정도가 높은 것으로 나타났다. 그리고 그래프의 시각화를 통해 지진이 어느 지역에서 많이 발생했는지를 쉽게 파악할 수 있고, 향후 지진 발생시 피해를 예측하고 재산과 인명 피해를 최소화할 수 있는 예측 시스템 개발과 지진 데이터 분석 및 모델링 연구에 활용될 수 있을 것으로 보인다. 뿐만아니라 본 연구결과를 토대로 자기 유사성 프로세스는 지진활동의 패턴과 통계적 특성을 이해하고, 유사한 지진 사건을 그룹화하고 분류하는데 도움을 줄 수 있으며, 지진 활동에 대한 예측, 지진 위험 평가 및 지진 공학 관련 연구에 활용될 것으로 예상된다.

전기차 전과정평가를 위한 DID 기반 차량부품 데이터수집 모델 연구 (A Study on DID-based Vehicle Component Data Collection Model for EV Life Cycle Assessment)

  • 권준우;이수진;김제인;서승현
    • 정보처리학회논문지:컴퓨터 및 통신 시스템
    • /
    • 제12권10호
    • /
    • pp.309-318
    • /
    • 2023
  • 최근 세계 각국은 온실가스 배출을 규제하기 위해 전과정평가(LCA, Life Cycle Assessment)를 도입하려는 움직임을 보이고 있다. 전기차 전과정평가는 차량의 전체 수명주기에 걸쳐 발생하는 온실가스 배출량을 측정하고 평가하는 수단이다. 전과정평가 결과의 신뢰성을 높이기 위해서는 전기차 부품별로 신뢰성 있는 데이터가 필요하다. 이를 위해 최근 블록체인 기술을 적용한 전과정평가 모델에 대한 연구들이 수행되었다. 그러나 기존 연구들은 주요 제품 정보들이 다른 참여자들에게 그대로 노출되어 프라이버서 보호가 되지 않는 문제가 있고 부품데이터 정보가 업데이트될 때마다 트랜잭션 형태로 블록체인 원장에 기록해야 해서 비효율적이다. 따라서 본 논문에서는 효율적으로 전기차 차량부품 데이터를 수집하고 유효성을 검증하기 위해 전과정평가를 위한 DID 기반의 데이터수집 모델을 제안한다. 제안하는 모델은 수집된 데이터의 유효성과 무결성을 보장하며 블록체인 원장에는 사용자 인증 정보만 공유되어 데이터의 무분별한 노출을 방지하고 데이터의 출처를 효율적으로 검증 및 업데이트할 수 있다.

전송률 분할 다중 접속 기술을 활용한 비면허 대역의 트래픽과 공정성 최대화 기법 (Unlicensed Band Traffic and Fairness Maximization Approach Based on Rate-Splitting Multiple Access)

  • 전장우;김승욱
    • 정보처리학회논문지:컴퓨터 및 통신 시스템
    • /
    • 제12권10호
    • /
    • pp.299-308
    • /
    • 2023
  • 다양한 서비스가 등장으로 인해 스펙트럼 부족 문제가 가속하됨에 따라, 면허 대역에서 통신하던 사용자들을 비면허 대역에서 통신하는 NR-U(New Radio-Unlicensed)가 등장하였다. 하지만 NR-U 네트워크 사용자로 인해 동일한 비면허 대역에서 통신하는 Wi-Fi 네트워크 사용자의 성능이 감소하게 된다. 본 논문에서는 NR-U 네트워크 사용자와 WiFi 네트워크 사용자가 공존해있는 비면허 대역의 처리량과 비면허 대역의 사용에 대한 공평성을 동시에 최대화하는 것을 목표로 한다. 먼저 비면허 대역에서 전송률 분할 다중 접속 기술을 활용한 NR-U 네트워크의 합-전송 속도 (Sum of Rate)를 최대화하기 위해 강화 학습의 몬테 카를로 정책 하강법(Monte Carlo Policy Gradient)을 활용한 최적의 전력 할당 기법을 제안하였다. 그 뒤, 동일한 비면허 대역에서 NR-U 네트워크와 WiFi 네트워크의 공존을 위해 시스템 처리량과 공정성을 동시에 최대화할 수 있는 게임 이론의 순차적 라이파 협상 해법(Sequential Raiffa Bargaining Solution)을 활용한 채널 점유 시간 분할 알고리즘을 제안하였다. 시뮬레이션 결과에서 동일한 전력 할당 기법을 사용하였을 때, 본 논문에서 제안한 전송률 분할 다중 접속 기술이 기존의 다중 접속 기술들보다 더 빠른 합-전송속도를 보임을 확인하였다. 또한 비면허 대역 네트워크의 전송량과 공평성을 비교해본 결과 본 논문의 순차적 라이파 협상 해법을 활용한 채널 점유 시간 분할 알고리즘이 타 알고리즘보다 처리량과 공정성을 동시에 만족함을 입증하였다.

정보·컴퓨터 중등교사 임용시험의 프로그래밍 문항 분석 (Analysis of Programming Questions of the Informatics·Computer Secondary Teacher Recruitment Examination)

  • 강오한
    • 정보처리학회논문지:컴퓨터 및 통신 시스템
    • /
    • 제12권10호
    • /
    • pp.291-298
    • /
    • 2023
  • 본 논문에서는 정보·컴퓨터 표시과목의 임용시험에서 프로그래밍 문항이 프로그래밍 능력을 겸비한 교사 선발에 적합한지 연구하였다. 최근 5년 동안의 문항을 분석한 결과, 프로그래밍 문항의 평균 배점이 교과내용학 총점의 38%(20.8점)로 높게 나타났다. 기출문항에서 프로그래밍 문항의 배점 비중이 높은 과목은 프로그래밍과 자료구조로 확인되었으며, 이들의 평가영역별 배점분포를 분석한 결과 각각 0%~47%, 0%~53%로 영역별 편차가 큰 것으로 나타났다. 본 논문에서는 프로그래밍 문항이 교육 현장에서 요구하는 교사 선발에 적합한지 교사 31명을 대상으로 설문조사를 실시하였다. 임용시험의 프로그래밍 문항에서 평가할 내용에 대한 응답으로 컴퓨팅 사고력이 58%로 가장 높게 나타났다. 문항의 적합도에 대한 응답에서 문제해결력이 5점 척도 기준에서 2.84로 가장 높았으나 전반적으로 적합도가 낮은 것으로 나타났다. 프로그래밍 문항 출제를 위해 적합한 언어로 C언어와 파이썬의 응답이 각각 55%, 45%로 나타났다. 이 결과에서 교사들은 기존의 C언어 외에 파이썬 선호도가 매우 높은 것을 확인하였다. 본 연구에서는 이러한 연구결과를 바탕으로 프로그래밍 문항 출제에 대한 개선방안을 제안하였다.

User-independent blockchain donation system

  • Sang-Dong Sul;Su-Jeong Lee
    • 한국컴퓨터정보학회논문지
    • /
    • 제28권11호
    • /
    • pp.113-123
    • /
    • 2023
  • 본 논문은 사용자 독립방식의 블록체인 기부시스템인 Cherry system을 소개하고 있다. 이는 기부자가 기부를 하게 되면 가상계좌를 통해 수혜자의 통장으로 전달되는 절차라서 사용자 입장에서는 기존의 기부금 전달 방식과 차이가 없다. 다만 블록체인 내부에서는 사용자 ID에 따른 가상화폐인 체리 포인트를 매칭 방식으로 발행하여 수혜자에게 전달하면서, 모든 거래와 사용 내용을 블록체인에서 관리하는 방식이다. 이런 방법을 채택함으로 Typical transaction 상황에서 1,000TPS 이상을 나타내고, 21.3초 이내에 서비스 완료되는 블록체인 성능의 개선이 있었다. 본 시스템에서는 권한 자동 제어 알고리즘을 적용함으로써 stake에 따른 권한은 2개월이 경과하면 0.3으로 크게 감소하여 권한 집중화를 자동으로 제어할 수 있었다. 또한 개인 ID 별로 기부금 장부에 타임 스탬프 추적기능을 추가함으로써 마이크로 트래킹이 가능하도록 설계되었고, 이를 통해 기부금 사용의 투명성을 개선하였다. 서비스 관점에서 기존의 블록체인 기부시스템들은 제한된 기부금 전달 방식으로 처리되었던 것을 사용자 독립방식을 적용함으로써 다양한 형태로 기부금을 전달하게 하여 사용자 편의성을 크게 개선하였다.

CodeBERT 모델의 전이 학습 기반 코드 공통 취약점 탐색 (Detecting Common Weakness Enumeration(CWE) Based on the Transfer Learning of CodeBERT Model)

  • 박찬솔;문소영;김영철
    • 정보처리학회논문지:소프트웨어 및 데이터공학
    • /
    • 제12권10호
    • /
    • pp.431-436
    • /
    • 2023
  • 소프트웨어 공학 영역에 인공지능의 접목은 큰 화두 중 하나이다. 전 세계적으로 1) 인공지능을 통한 소프트웨어 공학, 2) 소프트웨어 공학을 통한 인공지능 두 가지 방향으로 활발히 연구되고 있다. 그 중 소프트웨어 공학에 인공지능을 접목하여 나쁜 코드 영역을 식별하고 해당 부분을 리팩토링하는 연구가 진행되고 있다. 해당 연구에서 인공지능이 나쁜 코드 요소의 패턴을 잘 학습하기 위해서는 학습하려는 나쁜 코드 요소가 라벨링 된 데이터셋이 필요하다. 문제는 데이터셋이 부족할뿐더러, 자체적으로 수집한 데이터셋의 정확도는 신뢰할 수 없다. 이를 해결하기 위해 코드 데이터 수집 시 전체 코드가 아닌 높은 복잡도를 가진 코드 모듈 영역을 대상으로만 나쁜 코드 데이터를 수집한다. 이후 수집한 데이터셋을 CodeBERT 모델의 전이 학습하여 코드 공통 취약점을 탐색하는 방법을 제안한다. 해당 데이터셋을 통해 CodeBERT 모델이 코드의 공통 취약점 패턴을 더 잘 학습할 수 있다. 이를 통해 전통적인 방법보다 인공지능 모델을 이용해 코드를 분석하고 공통 취약점 패턴을 더 정확하게 식별할 수 있을 것으로 기대한다.

LSTM을 이용한 협동 로봇 동작별 전류 및 진동 데이터 잔차 패턴 기반 기어 결함진단 (Gear Fault Diagnosis Based on Residual Patterns of Current and Vibration Data by Collaborative Robot's Motions Using LSTM)

  • 백지훈;유동연;이정원
    • 정보처리학회논문지:소프트웨어 및 데이터공학
    • /
    • 제12권10호
    • /
    • pp.445-454
    • /
    • 2023
  • 최근에는 협동 로봇의 데이터를 활용한 다양한 결함진단 연구가 수행되고 있다. 협동 로봇의 결함진단을 수행하는 기존 연구들은 기존 연구의 학습 데이터는 미리 정의된 기기의 동작을 가정하고 수집한 정적 데이터를 사용한다. 따라서 결함진단 모델은 학습한 데이터 패턴에 대한 의존성이 높아지는 한계가 있다. 또한 단일 모터를 사용한 실험으로 다관절이 동작하는 협동 로봇의 특성을 반영한 진단이 이루어지지 못했다는 한계가 있다. 본 논문에서는 앞서 언급한 두 가지 한계점을 해결할 수 있는 LSTM 진단 모델을 제안한다. 제안하는 방법은 단일 축 및 다중 축 작업 환경에서의 진동 및 전류 데이터의 상관분석을 사용하여 정상 대표 패턴을 선정하고, 정상 대표 패턴과의 차이를 통해 잔차 패턴을 생성한다. 생성된 잔차 패턴을 입력으로 축별 기어 마모 진단을 수행할 수 있는 LSTM 모델을 생성한다. 해당 결함진단 모델은 동작별 대표 패턴을 통해 모델의 학습 데이터 패턴에 대한 의존성을 낮출 수 있을 뿐 아니라 다중 축 동작 수행 시 발생하는 결함을 진단할 수 있다. 마지막으로, 내부 및 외부 데이터의 특성을 모두 반영하여 결함진단 성능을 개선한 결과 98.57%의 높은 진단 성능을 보였다.