• Title/Summary/Keyword: Transactions

Search Result 45,749, Processing Time 0.242 seconds

Efficient Privacy-Preserving Duplicate Elimination in Edge Computing Environment Based on Trusted Execution Environment (신뢰실행환경기반 엣지컴퓨팅 환경에서의 암호문에 대한 효율적 프라이버시 보존 데이터 중복제거)

  • Koo, Dongyoung
    • KIPS Transactions on Computer and Communication Systems
    • /
    • v.11 no.9
    • /
    • pp.305-316
    • /
    • 2022
  • With the flood of digital data owing to the Internet of Things and big data, cloud service providers that process and store vast amount of data from multiple users can apply duplicate data elimination technique for efficient data management. The user experience can be improved as the notion of edge computing paradigm is introduced as an extension of the cloud computing to improve problems such as network congestion to a central cloud server and reduced computational efficiency. However, the addition of a new edge device that is not entirely reliable in the edge computing may cause increase in the computational complexity for additional cryptographic operations to preserve data privacy in duplicate identification and elimination process. In this paper, we propose an efficiency-improved duplicate data elimination protocol while preserving data privacy with an optimized user-edge-cloud communication framework by utilizing a trusted execution environment. Direct sharing of secret information between the user and the central cloud server can minimize the computational complexity in edge devices and enables the use of efficient encryption algorithms at the side of cloud service providers. Users also improve the user experience by offloading data to edge devices, enabling duplicate elimination and independent activity. Through experiments, efficiency of the proposed scheme has been analyzed such as up to 78x improvements in computation during data outsourcing process compared to the previous study which does not exploit trusted execution environment in edge computing architecture.

Proposal of Promotion Strategy of Mobile Easy Payment Service Using Topic Modeling and PEST-SWOT Analysis (모바일 간편 결제 서비스 활성화 전략 : 토픽 모델링과 PEST - SWOT 분석 방법론을 기반으로)

  • Park, Seongwoo;Kim, Sehyoung;Kang, Juyoung
    • Journal of Intelligence and Information Systems
    • /
    • v.28 no.4
    • /
    • pp.365-385
    • /
    • 2022
  • The easy payment service is a payment and remittance service that uses a simple authentication method. As online transactions have increased due to COVID-19, the use of an easy payment service is increasing. At the same time, electronic financial industries such as Naver Pay, Kakao Pay, and Toss are diversifying the competition structure of the easy payment market; meanwhile overseas fintech companies PayPal and Alibaba have a unique market share in their own countries, while competition is intensifying in the domestic easy payment market, as there is no unique market share. In this study, the participants in the easy payment market were classified as electronic financial companies, mobile phone manufacturers, and financial companies, and a SWOT analysis was conducted on the representative services in each industry. The analysis examined the user reviews of Google Play Store via a topic modeling analysis, and it employed positive topics as strengths and negative topics as weaknesses. In addition, topic modeling was conducted by dividing news articles into political, economic, social, and technology (PEST) articles to derive the opportunities and threats to easy payment services. Through this research, we intend to confirm the service capabilities of easy payment companies and propose a service activation strategy that allows gaining the upper hand in the market.

Prediction Model of Hypertension Using Sociodemographic Characteristics Based on Machine Learning (머신러닝 기반 사회인구학적 특징을 이용한 고혈압 예측모델)

  • Lee, Bum Ju
    • KIPS Transactions on Software and Data Engineering
    • /
    • v.10 no.11
    • /
    • pp.541-546
    • /
    • 2021
  • Recently, there is a trend of developing various identification and prediction models for hypertension using clinical information based on artificial intelligence and machine learning around the world. However, most previous studies on identification or prediction models of hypertension lack the consideration of the ideas of non-invasive and cost-effective variables, race, region, and countries. Therefore, the objective of this study is to present hypertension prediction model that is easily understood using only general and simple sociodemographic variables. Data used in this study was based on the Korea National Health and Nutrition Examination Survey (2018). In men, the model using the naive Bayes with the wrapper-based feature subset selection method showed the highest predictive performance (ROC = 0.790, kappa = 0.396). In women, the model using the naive Bayes with correlation-based feature subset selection method showed the strongest predictive performance (ROC = 0.850, kappa = 0.495). We found that the predictive performance of hypertension based on only sociodemographic variables was higher in women than in men. We think that our models based on machine leaning may be readily used in the field of public health and epidemiology in the future because of the use of simple sociodemographic characteristics.

Comparative Study of Anomaly Detection Accuracy of Intrusion Detection Systems Based on Various Data Preprocessing Techniques (다양한 데이터 전처리 기법 기반 침입탐지 시스템의 이상탐지 정확도 비교 연구)

  • Park, Kyungseon;Kim, Kangseok
    • KIPS Transactions on Software and Data Engineering
    • /
    • v.10 no.11
    • /
    • pp.449-456
    • /
    • 2021
  • An intrusion detection system is a technology that detects abnormal behaviors that violate security, and detects abnormal operations and prevents system attacks. Existing intrusion detection systems have been designed using statistical analysis or anomaly detection techniques for traffic patterns, but modern systems generate a variety of traffic different from existing systems due to rapidly growing technologies, so the existing methods have limitations. In order to overcome this limitation, study on intrusion detection methods applying various machine learning techniques is being actively conducted. In this study, a comparative study was conducted on data preprocessing techniques that can improve the accuracy of anomaly detection using NGIDS-DS (Next Generation IDS Database) generated by simulation equipment for traffic in various network environments. Padding and sliding window were used as data preprocessing, and an oversampling technique with Adversarial Auto-Encoder (AAE) was applied to solve the problem of imbalance between the normal data rate and the abnormal data rate. In addition, the performance improvement of detection accuracy was confirmed by using Skip-gram among the Word2Vec techniques that can extract feature vectors of preprocessed sequence data. PCA-SVM and GRU were used as models for comparative experiments, and the experimental results showed better performance when sliding window, skip-gram, AAE, and GRU were applied.

Time Series Data Analysis and Prediction System Using PCA (주성분 분석 기법을 활용한 시계열 데이터 분석 및 예측 시스템)

  • Jin, Young-Hoon;Ji, Se-Hyun;Han, Kun-Hee
    • Journal of the Korea Convergence Society
    • /
    • v.12 no.11
    • /
    • pp.99-107
    • /
    • 2021
  • We live in a myriad of data. Various data are created in all situations in which we work, and we discover the meaning of data through big data technology. Many efforts are underway to find meaningful data. This paper introduces an analysis technique that enables humans to make better choices through the trend and prediction of time series data as a principal component analysis technique. Principal component analysis constructs covariance through the input data and presents eigenvectors and eigenvalues that can infer the direction of the data. The proposed method computes a reference axis in a time series data set having a similar directionality. It predicts the directionality of data in the next section through the angle between the directionality of each time series data constituting the data set and the reference axis. In this paper, we compare and verify the accuracy of the proposed algorithm with LSTM (Long Short-Term Memory) through cryptocurrency trends. As a result of comparative verification, the proposed method recorded relatively few transactions and high returns(112%) compared to LSTM in data with high volatility. It can mean that the signal was analyzed and predicted relatively accurately, and it is expected that better results can be derived through a more accurate threshold setting.

LSTM-based Fire and Odor Prediction Model for Edge System (엣지 시스템을 위한 LSTM 기반 화재 및 악취 예측 모델)

  • Youn, Joosang;Lee, TaeJin
    • KIPS Transactions on Computer and Communication Systems
    • /
    • v.11 no.2
    • /
    • pp.67-72
    • /
    • 2022
  • Recently, various intelligent application services using artificial intelligence are being actively developed. In particular, research on artificial intelligence-based real-time prediction services is being actively conducted in the manufacturing industry, and the demand for artificial intelligence services that can detect and predict fire and odors is very high. However, most of the existing detection and prediction systems do not predict the occurrence of fires and odors, but rather provide detection services after occurrence. This is because AI-based prediction service technology is not applied in existing systems. In addition, fire prediction, odor detection and odor level prediction services are services with ultra-low delay characteristics. Therefore, in order to provide ultra-low-latency prediction service, edge computing technology is combined with artificial intelligence models, so that faster inference results can be applied to the field faster than the cloud is being developed. Therefore, in this paper, we propose an LSTM algorithm-based learning model that can be used for fire prediction and odor detection/prediction, which are most required in the manufacturing industry. In addition, the proposed learning model is designed to be implemented in edge devices, and it is proposed to receive real-time sensor data from the IoT terminal and apply this data to the inference model to predict fire and odor conditions in real time. The proposed model evaluated the prediction accuracy of the learning model through three performance indicators, and the evaluation result showed an average performance of over 90%.

Personalized Clothing and Food Recommendation System Based on Emotions and Weather (감정과 날씨에 따른 개인 맞춤형 옷 및 음식 추천 시스템)

  • Ugli, Sadriddinov Ilkhomjon Rovshan;Park, Doo-Soon
    • KIPS Transactions on Software and Data Engineering
    • /
    • v.11 no.11
    • /
    • pp.447-454
    • /
    • 2022
  • In the era of the 4th industrial revolution, we are living in a flood of information. It is very difficult and complicated to find the information people need in such an environment. Therefore, in the flood of information, a recommendation system is essential. Among these recommendation systems, many studies have been conducted on each recommendation system for movies, music, food, and clothes. To date, most personalized recommendation systems have recommended clothes, books, or movies by checking individual tendencies such as age, genre, region, and gender. Future generations will want to be recommended clothes, books, and movies at once by checking age, genre, region, and gender. In this paper, we propose a recommendation system that recommends personalized clothes and food at once according to the user's emotions and weather. We obtained user data from Twitter of social media and analyzed this data as user's basic emotion according to Paul Eckman's theory. The basic emotions obtained in this way were converted into colors by applying Hayashi's Quantification Method III, and these colors were expressed as recommended clothes colors. Also, the type of clothing is recommended using the weather information of the visualcrossing.com API. In addition, various foods are recommended according to the contents of comfort food according to emotions.

Sensitivity analysis of RPLS inventory model with price dependent demand linearly under order-size-dependent delay in payments in a two-stage supply chain (주문량에 따라 종속적으로 외상거래기간이 허용되는 상황 하에 선형수요함수를 고려한 RPLS 재고모형의 퇴화율에 따른 민감도분석)

  • Shinn, Seong-Whan
    • The Journal of the Convergence on Culture Technology
    • /
    • v.8 no.5
    • /
    • pp.577-582
    • /
    • 2022
  • Credit transactions are used as a means of price discrimination from competitors in order for suppliers to increase customer demand. In particular, in the case of a two-stage supply chain consisting of a supplier, a retailer, and a customer, the deferral of payment for goods allowed by the supplier is a means of reducing the inventory investment cost of the retailer. Retailers have the opportunity to discount the selling price while anticipating an increase in end-customer demand through the reduction of the inventory investment cost. In view of the fact that such trade credit is provided for the purpose of increasing demand as a means of discrimination from competitors, it may be more general that the credit transaction period is allowed flexibly according to the transaction volume. In particular, in the case of deteriorating products, the credit transaction period given according to the order volume is a factor that increases the order volume of the retailer, but product deterioration can be a limiting factor in the increase in the order volume. The deterioration rate actually plays an important role in determining the inventory policy of the retailer. Therefore, in this paper, the effect of such deterioration rate on the inventory policy of retailer is analyzed.

A study on the selection of the target scope for destruction of personal credit information of customers whose financial transaction effect has ended (금융거래 효과가 종료된 고객의 개인신용정보 파기 대상 범위 선정에 관한 연구)

  • Baek, Song-Yi;Lim, Young-Bin;Lee, Chang-Gil;Chun, Sam-Hyun
    • The Journal of the Institute of Internet, Broadcasting and Communication
    • /
    • v.22 no.3
    • /
    • pp.163-169
    • /
    • 2022
  • According to the Credit Information Act, in order to protect customer information by relationship of credit information subjects, it is destroyed and stored separately in two stages according to the period after the financial transaction effect is over. However, there is a limitation in that the destruction of personal credit information of customers whose financial transaction effect has expired cannot be collectively destroyed when the transaction has been terminated, depending on the nature of the financial product and transaction. To this end, the IT person in charge is developing a computerized program according to the target and order of destruction by investigating the business relationship by transaction type in advance. In this process, if the identification of the upper relation between tables is unclear, a compliance issue arises in which personal credit information cannot be destroyed or even information that should not be destroyed because it depends on the subjective judgment of the IT person in charge. Therefore, in this paper, we propose a model and algorithm for identifying the referenced table based on SQL executed in the computer program, analyzing the upper relation between tables with the primary key information of the table, and visualizing and objectively selecting the range to be destroyed. presented and implemented.

Evaluating SR-Based Reinforcement Learning Algorithm Under the Highly Uncertain Decision Task (불확실성이 높은 의사결정 환경에서 SR 기반 강화학습 알고리즘의 성능 분석)

  • Kim, So Hyeon;Lee, Jee Hang
    • KIPS Transactions on Software and Data Engineering
    • /
    • v.11 no.8
    • /
    • pp.331-338
    • /
    • 2022
  • Successor representation (SR) is a model of human reinforcement learning (RL) mimicking the underlying mechanism of hippocampal cells constructing cognitive maps. SR utilizes these learned features to adaptively respond to the frequent reward changes. In this paper, we evaluated the performance of SR under the context where changes in latent variables of environments trigger the reward structure changes. For a benchmark test, we adopted SR-Dyna, an integration of SR into goal-driven Dyna RL algorithm in the 2-stage Markov Decision Task (MDT) in which we can intentionally manipulate the latent variables - state transition uncertainty and goal-condition. To precisely investigate the characteristics of SR, we conducted the experiments while controlling each latent variable that affects the changes in reward structure. Evaluation results showed that SR-Dyna could learn to respond to the reward changes in relation to the changes in latent variables, but could not learn rapidly in that situation. This brings about the necessity to build more robust RL models that can rapidly learn to respond to the frequent changes in the environment in which latent variables and reward structure change at the same time.