• 제목/요약/키워드: Trajectory-based Navigation System

검색결과 76건 처리시간 0.026초

열차용 복합 항법 시스템 신뢰성 검증을 위한 실 궤적 기반 시뮬레이터 개발 (Development of a Real Trajectory-based Simulator to Verify the Reliability of the Integrated Navigation System for Trains)

  • 채명석;조성윤;신경호
    • 한국전자통신학회논문지
    • /
    • 제16권1호
    • /
    • pp.135-144
    • /
    • 2021
  • 철도 시스템에서는 인프라 기반의 열차 검측시스템을 통해 열차의 위치정보를 획득하는 것이 일반적이다. 하지만 미검출 및 오검출에 의해 잘못된 위치정보가 제공될 수 있으며, 이로 인한 사고를 야기할 수 있는 문제점을 갖고 있다. 따라서 본 연구에서는 센서 기반 복합항법시스템을 사용하여 열차의 위치정보를 제공하는 방법을 제안한다. 그러나 정확한 정보제공을 위해 복합 항법 시스템의 신뢰성을 검증해야 한다. 따라서 본 논문에서는 실 궤적을 기반으로 기준 궤적과 센서 데이터를 생성하고 다양한 시나리오에 따른 복합 항법 시스템의 성능을 실 궤적 상에서 분석할 수 있는 시뮬레이터를 개발한다.

Development of a CSGPS/DR Integrated System for High-precision Trajectory Estimation for the Purpose of Vehicle Navigation

  • Yoo, Sang-Hoon;Lim, Jeong-Min;Oh, Jeong-Hun;Kim, Ho-Beom;Lee, Kwang-Eog;Sung, Tae-Kyung
    • Journal of Positioning, Navigation, and Timing
    • /
    • 제4권3호
    • /
    • pp.123-130
    • /
    • 2015
  • In this study, a carrier smoothed global positioning system / dead reckoning (CSGPS/DR) integrated system for high-precision trajectory estimation for the purpose of vehicle navigation was proposed. Existing code-based GPS has a low position accuracy, and carrier-phase differential global positioning system (CPDGPS) has a long waiting time for high-precision positioning and has a problem of high cost due to the establishment of infrastructure. To resolve this, the continuity of a trajectory was guaranteed by integrating CSGPS and DR. The results of the experiment indicated that the trajectory precision of the code-based GPS showed an error performance of more than 30cm, while that of the CSGPS/DR integrated system showed an error performance of less than 10cm. Based on this, it was found that the trajectory precision of the proposed CSGPS/DR integrated system is superior to that of the code-based GPS.

궤적 기반의 항공 교통 관리를 위한 스케줄링 시스템 개발 (Development of Scheduling System for Trajectory Based Air Traffic Management)

  • 오은미;은연주;김현경;전대근
    • 한국항행학회논문지
    • /
    • 제22권5호
    • /
    • pp.367-374
    • /
    • 2018
  • 차세대 통신링크를 활용한 항공로 교통 관리를 위해 궤적 기반의 관제 지원 스케줄링 시스템을 제안하였다. 차세대 ATS (air traffic services) 데이터링크인 Baseline 2를 사용하는 4DTRAD (4-dimensional trajectory data link) 서비스 내용을 기반으로 항공로 상을 비행 중인 항공기를 대상으로 하는 궤적기반운용 수행 절차를 수립하고 기술하였다. 이러한 절차를 바탕으로, 다양하고 복잡한 데이터 활용으로 인한 관제사의 업무 부담을 완화하기 위해 지상 시스템이 수신한 항공기 데이터를 처리하여 궤적을 예측하고 관제 조언 정보를 제공하는 스케줄링 시스템의 프로토타입을 개발하였다. 또한, 궤적 기반 항행을 위한 시뮬레이션 환경을 구성하여 개발 시스템에 대한 스케줄링 기능을 확인하였다.

수집된 경로데이터를 사용하는 내비게이션을 위한 대용량 경로조합 방법 (A Big-Data Trajectory Combination Method for Navigations using Collected Trajectory Data)

  • 구광민;이태호;박희민
    • 한국멀티미디어학회논문지
    • /
    • 제19권2호
    • /
    • pp.386-395
    • /
    • 2016
  • In trajectory-based navigation systems, a huge amount of trajectory data is needed for efficient route explorations. However, it would be very hard to collect trajectories from all the possible start and destination combinations. To provide a practical solution to this problem, we suggest a method combining collected GPS trajectories data into additional generated trajectories with new start and destination combinations without road information. We present a trajectory combination algorithm and its implementation with Scala programming language on Spark platform for big data processing. The experimental results proved that the proposed method can effectively populate the collected trajectories into valid trajectory paths more than three hundred times.

Implementation of Ship Trajectory Following Algorithm

  • Wonjin Choi;Seung-Hwan Jun
    • 한국항해항만학회지
    • /
    • 제47권2호
    • /
    • pp.49-56
    • /
    • 2023
  • As interest in autonomous ships continues to grow, researchers around the world are dedicating themselves to the development of relevant technologies. However, these technologies are not yet perfect. Several technical problems remain unresolved. To address these problems, this study presents the implementation of a ship trajectory algorithm for group navigation, where followers can navigate by following the trajectory of a leader. The algorithm works by storing the leader's trajectory as a follow-point and by calculating the azimuth using the line-of-sight guidance law to reach it. A course-keeping controller based on PD control is implemented to follow the target course and a speed control algorithm is designed to prevent collisions. Sea experiments were conducted using 1 m class small RC model boats to verify the proposed algorithm. The follower successfully navigated by following the leader's trajectory and maintained the designated distance to the forward boat. This study is significant in that it implements an algorithm for the follower to follow the trajectory of the leader rather than directly following it as in conventional methods, and verifies it through sea experiments.

A Study on the Implementation of RFID-based Autonomous Navigation System for Robotic Cellular Phone(RCP)

  • Choe, Jae-Il;Choi, Jung-Wook;Oh, Dong-Ik;Kim, Seung-Woo
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 제어로봇시스템학회 2005년도 ICCAS
    • /
    • pp.457-462
    • /
    • 2005
  • Industrial and economical importance of CP(Cellular Phone) is growing rapidly. Combined with IT technology, CP is currently one of the most attractive technologies for all. However, unless we find a breakthrough to the technology, its growth may slow down soon. RT(Robot Technology) is considered one of the most promising next generation technology. Unlike the industrial robot of the past, today's robots require advanced technologies, such as soft computing, human-friendly interface, interaction technique, speech recognition, object recognition, and many others. In this study, we present a new technological concept named RCP(Robotic Cellular Phone), which combines RT & CP, in the vision of opening a new direction to the advance of CP, IT, and RT all together. RCP consists of 3 sub-modules. They are $RCP^{Mobility}$, $RCP^{Interaction}$, and $RCP^{Interaction}$. $RCP^{Mobility}$ is the main focus of this paper. It is an autonomous navigation system that combines RT mobility with CP. Through $RCP^{Mobility}$, we should be able to provide CP with robotic functionalities such as auto-charging and real-world robotic entertainments. Eventually, CP may become a robotic pet to the human being. $RCP^{Mobility}$ consists of various controllers. Two of the main controllers are trajectory controller and self-localization controller. While Trajectory Controller is responsible for the wheel-based navigation of RCP, Self-Localization Controller provides localization information of the moving RCP. With the coordinate information acquired from RFID-based self-localization controller, Trajectory Controller refines RCP's movement to achieve better RCP navigations. In this paper, a prototype system we developed for $RCP^{Mobility}$ is presented. We describe overall structure of the system and provide experimental results of the RCP navigation.

  • PDF

전역 초음파 시스템을 이용한 이동 로봇의 자율 주행 (Autonomous Navigation of Mobile Robot Using Global Ultrasonic System)

  • 황병훈;이수영
    • 제어로봇시스템학회논문지
    • /
    • 제10권6호
    • /
    • pp.529-536
    • /
    • 2004
  • Autonomous navigation of an indoor mobile robot using the global ultrasonic system is presented in this paper. Since the trajectory error of the dead-reckoning navigation grows with time and distance, the autonomous navigation of a mobile robot requires to localize the current position of the robot, so that to compensate the trajectory error. The global ultrasonic system consisting of four ultrasonic generators fixed at a priori known positions in the work space and two receivers on the mobile robot has the similar structure with the well-known satellite GPS(Global Positioning System), and it is useful for the self-localization of an indoor mobile robot. The EKF(Extended Kalman Filter) algorithm for the self-localization is proposed and the autonomous navigation based on the self-localization is verified by experiments.

RFID를 이용한 RCP 자율 네비게이션 시스템 구현을 위한 연구 (A Study on the Implementation of RFID-Based Autonomous Navigation System for Robotic Cellular Phone (RCP))

  • 최재일;최정욱;오동익;김승우
    • 제어로봇시스템학회논문지
    • /
    • 제12권5호
    • /
    • pp.480-488
    • /
    • 2006
  • Industrial and economical importance of CP(Cellular Phone) is growing rapidly. Combined with IT technology, CP is one of the most attractive technologies of today. However, unless we find a new breakthrough in the technology, its growth may slow down soon. RT(Robot Technology) is considered one of the most promising next generation technologies. Unlike the industrial robot of the past, today's robots require advanced features, such as soft computing, human-friendly interface, interaction technique, speech recognition object recognition, among many others. In this paper, we present a new technological concept named RCP (Robotic Cellular Phone) which integrates RT and CP in the vision of opening a combined advancement of CP, IT, and RT, RCP consists of 3 sub-modules. They are $RCP^{Mobility}$(RCP Mobility System), $RCP^{Interaction}$, and $RCP^{Integration}$. The main focus of this paper is on $RCP^{Mobility}$ which combines an autonomous navigation system of the RT mobility with CP. Through $RCP^{Mobility}$, we are able to provide CP with robotic functions such as auto-charging and real-world robotic entertainment. Ultimately, CP may become a robotic pet to the human beings. $RCP^{Mobility}$ consists of various controllers. Two of the main controllers are trajectory controller and self-localization controller. While the former is responsible for the wheel-based navigation of RCP, the latter provides localization information of the moving RCP With the coordinates acquired from RFID-based self-localization controller, trajectory controller refines RCP's movement to achieve better navigation. In this paper, a prototype of $RCP^{Mobility}$ is presented. We describe overall structure of the system and provide experimental results on the RCP navigation.

Design of a Sliding Mode Control-Based Trajectory Tracking Controller for Marine Vehicles

  • Xu, Zhi-Zun;Kim, Heon-Hui;Park, Gyei-Kark;Nam, Taek-Kun
    • 한국항해항만학회지
    • /
    • 제42권2호
    • /
    • pp.87-96
    • /
    • 2018
  • A trajectory control system plays an important role in controlling motions of marine vehicle when a series of way points or a path is given. In this paper, a sliding mode control (SMC)-based trajectory tracking controller for marine vehicles is presented. A small-sized unmanned ship is considered as a control object. Both speed and heading angle of a ship should be controlled for tracking control. The common point of related researches was to separate ship's speed and heading angle in control methods. In this research, a new control law from a general sliding mode theory that can be applied to MIMO (multi input multi output) system is derived and both speed and heading angle of a ship can be controlled simultaneously. The propulsion force and rudder force are also applied in modeling stage to achieve accurate simulation. Disturbance induced by wind is also tackled in the dynamics considering robustness of the proposed control scheme. In the simulation, we employed a way-point method to generate ship's trajectory and applied the proposed control scheme to ship's trajectory tracking control. Our results confirmed that the tracking error was converged to zero, thus demonstrating the effectiveness of the proposed method.

선박의 항로추종을 위한 LOS 가이던스 시스템의 제안 (A Proposal of an LOS Guidance System of a Ship for Path Following)

  • 김종화;이병결
    • 제어로봇시스템학회논문지
    • /
    • 제11권4호
    • /
    • pp.363-368
    • /
    • 2005
  • This paper proposes an LOS(line-of-sight) guidance system of a ship for path following. From the viewpoint of a control configuration, guidance is a special type of compensation algorithm that is placed in front of the controller to accomplish navigational objects. A guidance system generates a reference trajectory for trajectory tracking or path control and decides the desired velocity, position and heading angle. A control system executes commands based on a reliable guidance law during navigation. An LOS vector from the vessel to a point on the path between two way-points in straight-line navigation or a point among turning circle in turning navigation is selected, and then a heading angle is calculated to converge the desired path based on the LOS vector. The LOS guidance law is defined for the straight-line and the turning circle, respectively. The effectiveness of the suggested LOS guidance system is assured through computer simulation.