• Title/Summary/Keyword: Trajectory-based Navigation

Search Result 120, Processing Time 0.021 seconds

A Study on Load Vibration Control in Crane Operating

  • Le, Nhat-Binh;Lee, Dong-Hun;Kim, Tae-Wan;Kim, Young-Bok
    • Proceedings of the Korean Institute of Navigation and Port Research Conference
    • /
    • 2017.11a
    • /
    • pp.58-60
    • /
    • 2017
  • In the offshore crane system, the requirements on the operating safety are extremely high due to many external factors. This paper describes a model for studying the dynamic behavior of the offshore crane system. The obtained model allows to evaluate the fluctuations of the load arising from the elasticity of the rope. Especially, in this paper, the authors design control system in which just winch rotation angle and rope tension are used without load position information. The controller design based on input-output feedback linearization theory is presented which can handle the effect of the elasticity of the rope and track the load target trajectory input. Besides that, a full order observer is designed to estimate unknown states. Finally, By the experiment results, the effectiveness of proposed control method is evaluated and verified.

  • PDF

A Study on Rendezvous Point between the Mobile Robot and Predicted Moving Objects (경로예측이 가능한 이동물체와 이동로봇간의 Rendezvous Point에 관한 연구)

  • Youn, Jung-Hoon;Lee, Kee-Seong
    • Proceedings of the KIEE Conference
    • /
    • 2001.11c
    • /
    • pp.84-86
    • /
    • 2001
  • A new navigation method is developed and implemented for mobile robot. The mobile robot navigation problem has traditionally been decomposed into the path planning and path following. Unlike tracking-based system, which minimize intercept time and moved mobile robot distance for optimal rendezvous point selection. To research of random moving object uses algorithm of Adaptive Control using Auto-regressive Model. A fine motion tracking object's trajectory is predicted of Auto-regressive Algorithm. Thus, the mobile robot can travel faster than the target wi thin the robot's workspace. The can select optimal rendezvous point of various intercept time.

  • PDF

A Study on Detection of Object Position and Displacement for Obstacle Recognition of UCT (무인 컨테이너 운반차량의 장애물 인식을 위한 물체의 위치 및 변위 검출에 관한 연구)

  • 이진우;이영진;조현철;손주한;이권순
    • Proceedings of the Korean Institute of Navigation and Port Research Conference
    • /
    • 1999.10a
    • /
    • pp.321-332
    • /
    • 1999
  • It is important to detect objects movement for obstacle recognition and path searching of UCT(unmanned container transporters) with vision sensor. This paper shows the method to draw out objects and to trace the trajectory of the moving object using a CCD camera and it describes the method to recognize the shape of objects by neural network. We can transform pixel points to objects position of the real space using the proposed viewport. This proposed technique is used by the single vision system based on floor map.

  • PDF

Development of a Vehicle Positioning Algorithm Using In-vehicle Sensors and Single Photo Resection and its Performance Evaluation (차량 내장 센서와 단영상 후방 교차법을 이용한 차량 위치 결정 알고리즘 개발 및 성능 평가)

  • Kim, Ho Jun;Lee, Im Pyeong
    • Journal of Korean Society for Geospatial Information Science
    • /
    • v.25 no.2
    • /
    • pp.21-29
    • /
    • 2017
  • For the efficient and stable operation of autonomous vehicles or advanced driver assistance systems being actively studied nowadays, it is important to determine the positions of the vehicle accurately and economically. A satellite based navigation system is mainly used for positioning, but it has a limitation in signal blockage areas. To overcome this limitation, sensor fusion methods including additional sensors such as an inertial navigation system have been mainly proposed but the high sensor cost has been a problem. In this work, we develop a vehicle position estimation algorithm using in-vehicle sensors and a low-cost imaging sensor without any expensive additional sensor. We determine the vehicle positions using the velocity and yaw-rate of a car from the in-vehicle sensors and the position and attitude of the camera based on the single photo resection process. For the evaluation, we built a prototype system, acquired test data using the system, and estimated the trajectory. The proposed algorithm shows the accuracy of about 40% higher than an in-vehicle sensor only method.

Real-time Path Replanning for Unmanned Aerial Vehicles: Considering Environmental Changes using RRT* and LOSPO (무인 항공기를 위한 실시간 경로 재계획 기법: RRT*와 LOSPO를 활용한 환경 변화 고려)

  • Jung Woo An;Ji Won Woo;Hyeon Seop Kim;Sang Yun Park;Gyeon Rae Nam
    • Journal of Advanced Navigation Technology
    • /
    • v.27 no.4
    • /
    • pp.365-373
    • /
    • 2023
  • Unmanned aerial vehicles are widely used in various fields, and real-time path replanning is a critical factor in enhancing the safety and efficiency of these devices. In this paper, we propose a real-time path replanning technique based on RRT* and LOSPO. The proposed technique first generates an initial path using the RRT* algorithm and then optimizes the path using LOSPO. Additionally, the optimized path can be converted into a trajectory that considers actual time and the dynamic limits of the aircraft. In this process, environmental changes and collision risks are detected in real-time, and the path is replanned as needed to maintain safe operation. This method has been verified through simulation-based experiments. The results of this paper make a significant contribution to the research on real-time path replanning for UAVs, and by applying this technique to various situations, the safety and efficiency of UAVs can be improved.

An indoor localization system for estimating human trajectories using a foot-mounted IMU sensor and step classification based on LSTM

  • Ts.Tengis;B.Dorj;T.Amartuvshin;Ch.Batchuluun;G.Bat-Erdene;Kh.Temuulen
    • International journal of advanced smart convergence
    • /
    • v.13 no.1
    • /
    • pp.37-47
    • /
    • 2024
  • This study presents the results of designing a system that determines the location of a person in an indoor environment based on a single IMU sensor attached to the tip of a person's shoe in an area where GPS signals are inaccessible. By adjusting for human footfall, it is possible to accurately determine human location and trajectory by correcting errors originating from the Inertial Measurement Unit (IMU) combined with advanced machine learning algorithms. Although there are various techniques to identify stepping, our study successfully recognized stepping with 98.7% accuracy using an artificial intelligence model known as Long Short-Term Memory (LSTM). Drawing upon the enhancements in our methodology, this article demonstrates a novel technique for generating a 200-meter trajectory, achieving a level of precision marked by a 2.1% error margin. Indoor pedestrian navigation systems, relying on inertial measurement units attached to the feet, have shown encouraging outcomes.

GPS Error Filtering using Continuity of Path for Autonomous Mobile Robot in Orchard Environment (과수원 환경에서 자율주행로봇을 위한 경로 연속성 기반 GPS오정보 필터링 연구)

  • Hyewon Yoon;Jeonghoon Kwak;Kyon-Mo Yang;Byong-Woo Gam;Tae-Gyu Yeo;Jongyoul Park;Kap-Ho Seo
    • The Journal of Korea Robotics Society
    • /
    • v.19 no.1
    • /
    • pp.23-30
    • /
    • 2024
  • This paper studies a GPS error filtering method that takes into account the continuity of the ongoing path to enhance the safety of autonomous agricultural mobile robots. Real-Time Kinematic Global Positioning System (RTK-GPS) is increasingly utilized for robot position evaluation in outdoor environments due to its significantly higher reliability compared to conventional GPS systems. However, in orchard environments, the robot's current position obtained from RTK-GPS information can become unstable due to unknown disturbances like orchard canopies. This problem can potentially lead to navigation errors and path deviations during the robot's movement. These issues can be resolved by filtering out GPS information that deviates from the continuity of the waypoints traversed, based on the robot's assessment of its current path. The contributions of this paper is as follows. 1) The method based on the previous waypoints of the traveled path to determine the current position and trajectory. 2) GPS filtering method based on deviations from the determined path. 3) Finally, verification of the navigation errors between the method applying the error filter and the method not applying the error filter.

Navigation System of UUV Using Multi-Sensor Fusion-Based EKF (융합된 다중 센서와 EKF 기반의 무인잠수정의 항법시스템 설계)

  • Park, Young-Sik;Choi, Won-Seok;Han, Seong-Ik;Lee, Jang-Myung
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.22 no.7
    • /
    • pp.562-569
    • /
    • 2016
  • This paper proposes a navigation system with a robust localization method for an underwater unmanned vehicle. For robust localization with IMU (Inertial Measurement Unit), a DVL (Doppler Velocity Log), and depth sensors, the EKF (Extended Kalman Filter) has been utilized to fuse multiple nonlinear data. Note that the GPS (Global Positioning System), which can obtain the absolute coordinates of the vehicle, cannot be used in the water. Additionally, the DVL has been used for measuring the relative velocity of the underwater vehicle. The DVL sensor measures the velocity of an object by using Doppler effects, which cause sound frequency changes from the relative velocity between a sound source and an observer. When the vehicle is moving, the motion trajectory to a target position can be recorded by the sensors attached to the vehicle. The performance of the proposed navigation system has been verified through real experiments in which an underwater unmanned vehicle reached a target position by using an IMU as a primary sensor and a DVL as the secondary sensor.

Test and Evaluation for GNSS based Lane Level Precise Positioning User System (위성항법 기반 차로구분 정밀위치결정 사용자 시스템 시험 평가)

  • Lee, Jung-Hoon;Lee, Sangwoo;Ahn, Jongsun;Im, Sunghyuck;Choi, Yunseong;Jang, Youngsu;Lee, Dongchul;Heo, Moon-Beom
    • Journal of Advanced Navigation Technology
    • /
    • v.22 no.6
    • /
    • pp.566-576
    • /
    • 2018
  • The C-ITS requires the lane level positioning of the vehicle in the land transportation environment, and it is most effective to utilize the GNSS. In the precision positioning system based on satellite navigation, the evaluation of dynamic environment of lane level positioning performance should be accompanied and the evaluation system configuration should be preceded. In this paper, we selected performance indicators, assessment equipment, and reliability of reference equipment for evaluation of precision positioning user systems based on the GNSS. The performance evaluation system described above is applied to a real system, and the performance evaluation tool developed for the evaluation system is described. The numerical performance evaluation was carried out based on the data collected by carrying out the actual testbed driving. The performance evaluation by the actual driving trajectory and driving image comparison was performed to derive and analyse the evaluation results of the vehicle lane level positioning user system.

Performance Analysis of Batch Process Terrain Relative Navigation Using Area based Terrain Roughness Index for Lunar Lander (영역기반 지형 험준도 지수를 이용한 달착륙선의 일괄처리방식 지형상대항법 성능분석)

  • Ku, Pyung-Mo;Park, Young-Bum;Park, Chan-Gook
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.44 no.7
    • /
    • pp.629-639
    • /
    • 2016
  • Batch process TRN(Terrain Relative Navigation) using an altimeter is a technique to correct position by correlating a series of periodically measured terrain height profile and terrain height candidate profile of the DEM(Digital Elevation Map). However, it is generally known that the performance of TRN is degraded when measured terrain height profile and terrain height candidate profiles of the DEM are similar at hill or repetitive terrain. In this paper, area based terrain slope roughness index[11] is applied and area based terrain curvature roughness index which can detect similarity of terrain in ROI(Region Of Interest) is proposed to overcome this problem. Applying terrain roughness indexes to terrain relative navigation system of lunar lander, it is shown that TRN using area based terrain roughness results in improved performance compared to conventional trajectory based method through simulation.