• Title/Summary/Keyword: Trajectory estimation

Search Result 223, Processing Time 0.025 seconds

Estimation of Heavy Metal Contamination by PM10 Inflow Pathways while Asian Dust in Gwangju (광주지역 황사시 미세먼지 유입경로별 중금속 오염도 평가)

  • Yang, Yoon-Cheol;Lee, Se-Haeng;Park, Byoung-Hoon;Jo, Gwang-Un;Yoon, Sang-Hoon;Park, Ji-Young;Jang, Dong;Chong, Ji-hyo;Bae, Seok-Jin;Jeong, Suk-Kyoung
    • Journal of Environmental Science International
    • /
    • v.29 no.1
    • /
    • pp.55-68
    • /
    • 2020
  • The purpose of this study is to investigate the relationship of fine dust PM10 and heavy metals in PM10 in Asian dust flowing into Gwangju from 2013 to 2018. The migration pathways of Asian dust was analyzed by backward trajectory analysis using HYSPLIT (Hybrid Single Particle Lagrangian Integrated Trajectory) model, and the change of heavy metal concentration and heavy metal content per 1 ㎍/㎥ of fine dust PM10 in Gwangju area were analyzed. Also, the characteristics of the heavy metals were analyzed using the correlation between the heavy metals in PM10. As a result of analyzing Asian dust entering the Gwangju region for 6 years, the average concentration of PM10 measured in Asian dust was 148 ㎍/㎥, which was about 4.5 times higher than in non-Asian dust, 33 ㎍/㎥. A total of 13 Asian dust flowed into the Gwangju during 6 years, and high concentration of PM10 and heavy metals in that were analyzed in the C path flowing through the Gobi/Loess Plateau-Korean Peninsula. As a result of the correlation analysis, in case of Asian dust, there was a high correlation between soil components in heavy metals, so Asian dust seems to have a large external inflow. On the other hand, in case of non-Asian dust, the correlation between find dust PM10 and artificial heavy metal components was high, indicating that the influence of industrial activities in Gwangju area was high.

Efficient Management of Moving Object Trajectories in the Stream Environment (스트림 환경에서 이동객체 궤적의 효율적 관리)

  • Lee, Won-Cheol;Moon, Yang-Sae;Rhee, Sang-Min
    • Journal of KIISE:Databases
    • /
    • v.34 no.4
    • /
    • pp.343-356
    • /
    • 2007
  • Due to advances in position monitoring technologies such as global positioning systems and sensor networks, recent position information of moving objects has the form of streaming data which are updated continuously and rapidly. In this paper we propose an efficient trajectory maintenance method that stores the streaming position data of moving objects in the limited size of storage space and estimates past positions based on the stored data. For this, we first propose a new concept of incremental extraction of position information. The incremental extraction means that, whenever a new position is added into the system, we incrementally re-compute the new version of past position data maintained in the system using the current version of past position data and the newly added position. Next, based on the incremental extraction, we present an overall framework that stores position information and estimates past positions in the stream environment. We then propose two polynomial-based methods, line-based and curve-based methods, as the method of estimating the past positions on the framework. We also propose three incremental extraction methods: equi-width, slope-based, and recent-emphasis extraction methods. Experimental results show that the proposed incremental extraction provides the relatively high accuracy (error rate is less than 3%) even though we maintain only a little portion (only 0.1%) of past position information. In particular, the curve-based incremental extraction provides very low error rate of 1.5% even storing 0.1% of total position data. These results indicate that our incremental extraction methods provide an efficient framework for storing the position information of moving objects and estimating the past positions in the stream environment.

A Study on Estimation of the Course Keeping Ability of a Ship in Confined Waterways Using the MMG Model (MMG 모델을 이용한 제한수로를 운항하는 선박의 침로안정성능 추정에 관한 연구)

  • Kim, Hyunchul;Kim, In-Tae;Kim, Sanghyun;Kwon, Soo Yeon
    • Journal of Navigation and Port Research
    • /
    • v.43 no.6
    • /
    • pp.369-376
    • /
    • 2019
  • Ship hydrodynamics in the confined waterways is challenging. When a ship is maneuvering in confined waterways, the hydrodynamic behavior may vary significantly because of the hydrodynamic interaction between the bottom of the ship hull and the seabed, or so-called shallow water effects. Thus, an accurate prediction of shallow water and bank effects is essential to minimizing the risk of the collision and the grounding of the ships. The hydrodynamic derivatives measured by the virtual captive model test provide a path to predicting the change in ship maneuverability. This paper presents a numerical simulation of captive model tests to predict the maneuverability of a ship in confined waterways. Also, straight and zig-zag simulation were conducted to predict the trajectory of a ship maneuvering in confined waterways. The results showed that the asymmetric flow around a ship induced by vicinity of banks causes pressure differences between the port and starboard sides and the trajectory of a ship maneuvering in confined waterways.

A study of epidemic model using SEIR model (SEIR 모형을 이용한 전염병 모형 예측 연구)

  • Do, Mijin;Kim, Jongtae;Choi, Boseung
    • Journal of the Korean Data and Information Science Society
    • /
    • v.28 no.2
    • /
    • pp.297-307
    • /
    • 2017
  • The epidemic model is used to model the spread of disease and to control the disease. In this research, we utilize SEIR model which is one of applications the SIR model that incorporates Exposed step to the model. The SEIR model assumes that a people in the susceptible contacted infected moves to the exposed period. After staying in the period, the infectee tends to sequentially proceed to the status of infected, recovered, and removed. This type of infection can be used for research in cases where there is a latency period after infectious disease. In this research, we collected respiratory infectious disease data for the Middle East Respiratory Syndrome Coronavirus (MERSCoV). Assuming that the spread of disease follows a stochastic process rather than a deterministic one, we utilized the Poisson process for the variation of infection and applied epidemic model to the stochastic chemical reaction model. Using observed pandemic data, we estimated three parameters in the SIER model; exposed rate, transmission rate, and recovery rate. After estimating the model, we applied the fitted model to the explanation of spread disease. Additionally, we include a process for generating the Exposed trajectory during the model estimation process due to the lack of the information of exact trajectory of Exposed.

Estimation of Retained Rate in Open-water Sediment Disposal (개방수역 퇴적물 처리에서 유보율의 평가)

  • Shin, Hosung;Kim, Kyu-Sun
    • Journal of the Korean Geotechnical Society
    • /
    • v.31 no.11
    • /
    • pp.49-60
    • /
    • 2015
  • Open-water sediment disposal has many applications in costal construction. Dumping of sediment in open water can be divided into descending stage under water and sedimentation stage on the seabed, and retained rate is evaluated from analyzed results of these two successive stages. Descending particle cloud have two distinct thermal and swam phase, and trajectory equations for each phase are derived to describe settling velocity and radius of particle cloud. For sedimentation stage, a numerical simulator is used to calculate growth factors for particle fiction angle and current velocity. Retained rate is defined as a mass rate of remained sediment inside the circle which has a center at dumping point on the sea level and user-defined effective radius. Retained rate map for Singapore coast is presented with water depth of 20 m, current velocity of 0.0~1.5 m/s, and effective radius of 5 m. It will decrease sediment mass loss during disposal operation and minimize surrounding environmental pollution.

Estimation of Attitude Control for Quadruped Walking Robot Using Load Cell (로드셀을 이용한 4족 보행로봇의 자세제어 평가)

  • Eom, Han-Sung
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.16 no.6
    • /
    • pp.1235-1241
    • /
    • 2012
  • In this paper, each driving motor for leg joints on a robot is controlled by estimating the direction of the legs measuring each joint angle and attitude angle of robot. We used quadruped working robot named TITAN-VIII in order to carry out this experimental study. 4 load cells are installed under the bottom of 4 legs to measure the pressed force on each leg while it's walking. The walking experiments of the robot were performed in 8 different conditions combined with duty factor, the length of a stride, the trajectory height of the foot and walking period of robot. The validity of attitude control for quadruped walking robot is evaluated by comparing the pressed force on a leg and the power consumption of joint driving motor. As a result, it was confirmed that the slip-condition of which the foot leave the ground late at the beginning of new period of the robot during walking process, which means the attitude control of the robot during walking process wasn't perfect only by measuring joint and attitude angle for estimating the direction of the foot.

Parallel Gaussian Processes for Gait and Phase Analysis (보행 방향 및 상태 분석을 위한 병렬 가우스 과정)

  • Sin, Bong-Kee
    • Journal of KIISE
    • /
    • v.42 no.6
    • /
    • pp.748-754
    • /
    • 2015
  • This paper proposes a sequential state estimation model consisting of continuous and discrete variables, as a way of generalizing all discrete-state factorial HMM, and gives a design of gait motion model based on the idea. The discrete state variable implements a Markov chain that models the gait dynamics, and for each state of the Markov chain, we created a Gaussian process over the space of the continuous variable. The Markov chain controls the switching among Gaussian processes, each of which models the rotation or various views of a gait state. Then a particle filter-based algorithm is presented to give an approximate filtering solution. Given an input vector sequence presented over time, this finds a trajectory that follows a Gaussian process and occasionally switches to another dynamically. Experimental results show that the proposed model can provide a very intuitive interpretation of video-based gait into a sequence of poses and a sequence of posture states.

A Clinical Application of 3D Muscle-Tendon Complex Model for the Estimation of Lowerbody Musculoskeletal Disorders (하지 근골격계질환 평가를 위한 삼차원 근.건모델의 임상적용)

  • Rim, Yong-Hoon;Choi, Jae-Il;Choi, Ahn-Ryul;Min, Kyoung-Kee;Yun, Tae-Sun;Park, Kwang-Yong;Mun, Joung-Hwan
    • Journal of Biosystems Engineering
    • /
    • v.34 no.1
    • /
    • pp.57-62
    • /
    • 2009
  • Kinematic analysis of MTC (Muscle-Tendon Complex) units is a key indicator for diagnosis of patients with musculoskeletal disorders because the contracture or shortening of musculo-tendinous units is known to produce pathological gaits. Therefore, the principal objective of this study was to assess the length change in the triceps surae prior to and after wearing an AFO (Ankle-Foot Orthoses) in patients with musculoskeletal disorders during a gait. In this study, analyses were conducted using a Muscle Tendon Complex model coupled with the trajectory data from markers attached to anatomical landmarks. As a result, the maximum length change in the triceps surae during a gait was 4.87% when a barefoot walking group and a walking group with AFO were compared. In particular, the difference in length changes between both groups in Soleus MTC units was found to be statistically significant in all gait phases. Our results revealed that MTC length in the AFO walking group was clearly increased over that of the barefoot walking group. In the future, further studies will be required in order to more adequately assess musculoskeletal disorders using many cases studies with regard to agricultural working conditions because this study deals with the kinematic analysis of musculo-tendinous units in the case of clinical experiments.

Space-Time Quantization and Motion-Aligned Reconstruction for Block-Based Compressive Video Sensing

  • Li, Ran;Liu, Hongbing;He, Wei;Ma, Xingpo
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.10 no.1
    • /
    • pp.321-340
    • /
    • 2016
  • The Compressive Video Sensing (CVS) is a useful technology for wireless systems requiring simple encoders but handling more complex decoders, and its rate-distortion performance is highly affected by the quantization of measurements and reconstruction of video frame, which motivates us to presents the Space-Time Quantization (ST-Q) and Motion-Aligned Reconstruction (MA-R) in this paper to both improve the performance of CVS system. The ST-Q removes the space-time redundancy in the measurement vector to reduce the amount of bits required to encode the video frame, and it also guarantees a low quantization error due to the fact that the high frequency of small values close to zero in the predictive residuals limits the intensity of quantizing noise. The MA-R constructs the Multi-Hypothesis (MH) matrix by selecting the temporal neighbors along the motion trajectory of current to-be-reconstructed block to improve the accuracy of prediction, and besides it reduces the computational complexity of motion estimation by the extraction of static area and 3-D Recursive Search (3DRS). Extensive experiments validate that the significant improvements is achieved by ST-Q in the rate-distortion as compared with the existing quantization methods, and the MA-R improves both the objective and the subjective quality of the reconstructed video frame. Combined with ST-Q and MA-R, the CVS system obtains a significant rate-distortion performance gain when compared with the existing CS-based video codecs.

An Estimator Design of Turning Acceleration for Tracking a Maneuvering Target using Curvature (곡률을 이용한 기동표적 추적용 회전가속도 추정기 설계)

  • Joo, Jae-Seok;Park, Je-Hong;Lim, Sang-Seok
    • Journal of Advanced Navigation Technology
    • /
    • v.4 no.2
    • /
    • pp.162-170
    • /
    • 2000
  • Maneuvering targets are difficult for the Kalman filter to track since the target model of tracking filter might not fit the real target trajectory and the statistical characteristics of the target maneuver are unknown in advance. In order to track such a wildly maneuvering target, several schemes had been proposed and improved the tracking performance in some extent. In this paper a Kalman filter-based scheme is proposed for maneuvering target tracking. The proposed scheme estimates the target acceleration input vector directly from the feature of maneuvering target trajectories and updates the simple Kalman tracker by use of the acceleration estimates. Simulation results for various target profiles are analyzed for a comparison of the performances of our proposed scheme with that of conventional trackers.

  • PDF