• Title/Summary/Keyword: Trajectory distance

Search Result 264, Processing Time 0.024 seconds

Grid-based Similar Trajectory Search for Moving Objects on Road Network (공간 네트워크에서 이동 객체를 위한 그리드 기반 유사 궤적 검색)

  • Kim, Young-Chang;Chang, Jae-Woo
    • Journal of Korea Spatial Information System Society
    • /
    • v.10 no.1
    • /
    • pp.29-40
    • /
    • 2008
  • With the spread of mobile devices and advances in communication techknowledges, the needs of application which uses the movement patterns of moving objects in history trajectory data of moving objects gets Increasing. Especially, to design public transportation route or road network of the new city, we can use the similar patterns in the trajectories of moving objects that move on the spatial network such as road and railway. In this paper, we propose a spatio-temporal similar trajectory search algorithm for moving objects on road network. For this, we define a spatio-temporal similarity measure based on the real road network distance and propose a grid-based index structure for similar trajectory search. Finally, we analyze the performance of the proposed similar trajectory search algorithm in order to show its efficiency.

  • PDF

Validation of OpenDrift-Based Drifter Trajectory Prediction Technique for Maritime Search and Rescue

  • Ji-Chang Kim;Dae, Hun, Yu;Jung-eun Sim;Young-Tae Son;Ki-Young Bang;Sungwon Shin
    • Journal of Ocean Engineering and Technology
    • /
    • v.37 no.4
    • /
    • pp.145-157
    • /
    • 2023
  • Due to a recent increase in maritime activities in South Korea, the frequency of maritime distress is escalating and poses a significant threat to lives and property. The aim of this study was to validate a drift trajectory prediction technique to help mitigate the damages caused by maritime distress incidents. In this study, OpenDrift was verified using satellite drifter data from the Korea Hydrographic and Oceanographic Agency. OpenDrift is a Monte-Carlo-based Lagrangian trajectory modeling framework that allows for considering leeway, an important factor in predicting the movement of floating marine objects. The simulation results showed no significant differences in the performance of drift trajectory prediction when considering leeway using four evaluation methods (normalized cumulative Lagrangian separation, root mean squared error, mean absolute error, and Euclidean distance). However, leeway improved the performance in an analysis of location prediction conformance for maritime search and rescue operations. Therefore, the findings of this study suggest that it is important to consider leeway in drift trajectory prediction for effective maritime search and rescue operations. The results could help with future research on drift trajectory prediction of various floating objects, including marine debris, satellite drifters, and sea ice.

How airplanes fly at power-off and full-power on rectilinear trajectories

  • Labonte, Gilles
    • Advances in aircraft and spacecraft science
    • /
    • v.7 no.1
    • /
    • pp.53-78
    • /
    • 2020
  • Automatic trajectory planning is an important task that will have to be performed by truly autonomous vehicles. The main method proposed, for unmanned airplanes to do this, consists in concatenating elementary segments of trajectories such as rectilinear, circular and helical segments. It is argued here that because these cannot be expected to all be flyable at a same constant speed, it is necessary to consider segments on which the airplane accelerates or decelerates. In order to preserve the planning advantages that result from having the speed constant, it is proposed to do all speed changes at maximum deceleration or acceleration, so that they are as brief as possible. The constraints on the load factor, the lift and the power required for the motion are derived. The equation of motion for such accelerated motions is solved numerically. New results are obtained concerning the value of the angle and the speed for which the longest distance and the longest duration glides happen, and then for which the steepest, the fastest and the most fuel economical climbs happen. The values obtained differ from those found in most airplane dynamics textbooks. Example of tables are produced that show how general speed changes can be effected efficiently; showing the time required for the changes, the horizontal distance traveled and the amount of fuel required. The results obtained apply to all internal combustion engine-propeller driven airplanes.

Moving Objects Modeling for Supporting Content and Similarity Searches (내용 및 유사도 검색을 위한 움직임 객체 모델링)

  • 복경수;김미희;신재룡;유재수;조기형
    • Journal of Korea Multimedia Society
    • /
    • v.7 no.5
    • /
    • pp.617-632
    • /
    • 2004
  • Video Data includes moving objects which change spatial positions as time goes by. In this paper, we propose a new modeling method for a moving object contained in the video data. In order to effectively retrieve moving objects, the proposed modeling method represents the spatial position and the size of a moving object. It also represents the visual features and the trajectory by considering direction, distance and speed or moving objects as time goes by. Therefore, It allows various types of retrieval such as visual feature based similarity retrieval, distance based similarity retrieval and trajectory based similarity retrieval and their mixed type of weighted retrieval.

  • PDF

Similar Sub-Trajectory Retrieval based on k-warping Algorithm for Moving Objects in Video Databases (비디오 데이타베이스에서 이동 객체를 위한 k-워핑 알고리즘 기반 유사 부분궤적 검색)

  • 심춘보;장재우
    • Journal of KIISE:Databases
    • /
    • v.30 no.1
    • /
    • pp.14-26
    • /
    • 2003
  • Moving objects' trajectories play an important role in indexing video data on their content and semantics for content-based video retrieval. In this paper, we propose new similar sub-trajectory retrieval schemes based on k-warping algorithm for efficient retrieval on moving objects' trajectories in video data. The proposed schemes are fixed-replication similar sub-trajectory retrieval(FRSR) and variable-replication similar sub-trajectory retrieval(VRSR). The former can replicate motions with a fixed number for all motions being composed of the trajectory. The latter can replicate motions with a variable number. Our schemes support multiple properties including direction, distance, and time interval as well as a single property of direction, which is mainly used for modeling moving objects' trajectories. Finally, we show from our experiment that our schemes outperform Li's scheme(no-warping) and Shan's scheme(infinite-warping) in terns of precision and recall measures.

A Tangential Cutting Algorithm for Rapid Prototyping (쾌속조형을 위한 효과적인 경사절단 알고리즘 개발)

  • 공용해;엄태준;주영철;안덕상
    • Proceedings of the IEEK Conference
    • /
    • 2002.06c
    • /
    • pp.55-58
    • /
    • 2002
  • Rapid Prototyping(RP) systems, that fabricate objects with slicers, typically bear staircase artifacts when slices has a certain degree of thickness. A tangential cutting algorithm is developed in order to remove surface distortion as well as to generate smooth laser-cutting trajectory. For this, an energy function is defined with tangential line length and distance between tangential line and middle contour. Then, the energy is minimized to generate effective tangential line segments. The proposed algorithm is tested and verified on 3D object samples and the results show that the generated tangential lines effectively approximate layer surface and make laser trajectory smooth.

  • PDF

Trajectory Optimization in Consideration of Inertial Navigation Errors

  • Ryoo, Chang-Kyung;Kim, Jong-Ju;Cho, Hang-Ju
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2001.10a
    • /
    • pp.125.2-125
    • /
    • 2001
  • Inertial navigation error is the major source of miss distance when only the inertial navigation system is used for guidance, and tend to monotonically increase if the flight time is small compared to the Schuler period. Miss distance due to these inertial navigation errors, therefore, can be minimized when a missile has the minimum time trajectory. Moreover, vertical component of navigation error becomes null if he impact angle to a surface target approaches to 90 degrees. In this paper, the minimum time trajectories with the steep terminal impact angle constraint are obtained by using CFSQP 2.5, and their properties are analyzed to give a guideline for he construction of an effective guidance algorithm for short range tactical surface-to-surface missiles.

  • PDF

Trajectory Guidance and Control for a Small UAV

  • Sato, Yoichi;Yamasaki, Takeshi;Takano, Hiroyuki;Baba, Yoriaki
    • International Journal of Aeronautical and Space Sciences
    • /
    • v.7 no.2
    • /
    • pp.137-144
    • /
    • 2006
  • The objective of this paper is to present trajectory guidance and control system with a dynamic inversion for a small unmanned aerial vehicle (UAV). The UAV model is expressed by fixed-mass rigid-body six-degree-of-freedom equations of motion, which include the detailed aerodynamic coefficients, the engine model and the actuator models that have lags and limits. A trajectory is generated from the given waypoints using cubic spline functions of a flight distance. The commanded values of an angle of attack, a sideslip angle, a bank angle and a thrust, are calculated from guidance forces to trace the flight trajectory. To adapt various waypoint locations, a proportional navigation is combined with the guidance system. By the decision logic, appropriate guidance law is selected. The flight control system to achieve the commands is designed using a dynamic inversion approach. For a dynamic inversion controller we use the two-timescale assumption that separates the fast dynamics, involving the angular rates of the aircraft, from the slow dynamics, which include angle of attack, sideslip angle, and bank angle. Some numerical simulations are conducted to see the performance of the proposed guidance and control system.

Collision-Free Trajectory Planning for Dual Robot Arms Using Iterative Learning Concept (反復 學習槪念을 利용한 두 臺의 로봇의 衝突回避 軌跡計劃)

  • 정낙영;서일홍;최동훈
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.15 no.1
    • /
    • pp.69-77
    • /
    • 1991
  • A collision-free trajectory planning algorithm using an iterative learning concept is proposed for dual robot arms in a 3-D common workspace to accurately follow their specified paths with constant velocities. Specifically, a collision-free trajectory minimizing the trajectory error is obtained first by employing the linear programming technique. Then the total operating time is iteratively adjusted based on the maximum trajectory error of the previous iteration so that the collision-free trajectory has no deviation from the specified path and also that the operating time is near-minimal. To show the validity of the proposed algorithm, a numerical example is presented based on two planar robots.

A Random Walk Model for Estimating Debris Flow Damage Range (랜덤워크 모델을 이용한 토석류 산사태 피해범위 산정기법 제안)

  • Young-Suk Song;Min-Sun Lee
    • The Journal of Engineering Geology
    • /
    • v.33 no.1
    • /
    • pp.201-211
    • /
    • 2023
  • This study investigated the damage range of the debris flow to predict the amount of collapsed soil in a landslide event. The height of the collapsed slope and the distance traveled by the collapsed soil were used to predict the total trajectory distance using a random walk model. Debris flow trajectory probabilities were calculated through 10,000 Monte Carlo simulations and were used to calculate the damage range as measured from the landslide scar to its toe. Compiled information on debris flows that occurred in the Cheonwangbong area of Mt. Jirisan was used to test the accuracy of the proposed random walk model in estimating the damage range of debris flow. Results of the comparison reveal that the proposed model shows reasonable accuracy in estimating the damage range of debris flow and that using 10 m × 10 m cells allows the damage range to be reproduced with satisfactory precision.