• Title/Summary/Keyword: Trajectory Retrieval

Search Result 32, Processing Time 0.019 seconds

Similar Sub-Trajectory Retrieval based on k-warping Algorithm for Moving Objects in Video Databases (비디오 데이타베이스에서 이동 객체를 위한 k-워핑 알고리즘 기반 유사 부분궤적 검색)

  • 심춘보;장재우
    • Journal of KIISE:Databases
    • /
    • v.30 no.1
    • /
    • pp.14-26
    • /
    • 2003
  • Moving objects' trajectories play an important role in indexing video data on their content and semantics for content-based video retrieval. In this paper, we propose new similar sub-trajectory retrieval schemes based on k-warping algorithm for efficient retrieval on moving objects' trajectories in video data. The proposed schemes are fixed-replication similar sub-trajectory retrieval(FRSR) and variable-replication similar sub-trajectory retrieval(VRSR). The former can replicate motions with a fixed number for all motions being composed of the trajectory. The latter can replicate motions with a variable number. Our schemes support multiple properties including direction, distance, and time interval as well as a single property of direction, which is mainly used for modeling moving objects' trajectories. Finally, we show from our experiment that our schemes outperform Li's scheme(no-warping) and Shan's scheme(infinite-warping) in terns of precision and recall measures.

Signature-based Indexing Scheme for Similar Sub-Trajectory Retrieval of Moving Objects (이동 객체의 유사 부분궤적 검색을 위한 시그니쳐-기반 색인 기법)

  • Shim, Choon-Bo;Chang, Jae-Woo
    • The KIPS Transactions:PartD
    • /
    • v.11D no.2
    • /
    • pp.247-258
    • /
    • 2004
  • Recently, there have been researches on storage and retrieval technique of moving objects, which are highly concerned by user in database application area such as video databases, spatio-temporal databases, and mobile databases. In this paper, we propose a new signature-based indexing scheme which supports similar sub-trajectory retrieval at well as good retrieval performance on moving objects trajectories. Our signature-based indexing scheme is classified into concatenated signature-based indexing scheme for similar sub-trajectory retrieval, entitled CISR scheme and superimposed signature-based indexing scheme for similar sub-trajectory retrieval, entitled SISR scheme according to generation method of trajectory signature based on trajectory data of moving object. Our indexing scheme can improve retrieval performance by reducing a large number of disk access on data file because it first scans all signatures and does filtering before accessing the data file. In addition, we can encourage retrieval efficiency by appling k-warping algorithm to measure the similarity between query trajectory and data trajectory. Final]y, we evaluate the performance on sequential scan method(SeqScan), CISR scheme, and SISR scheme in terms of data insertion time, retrieval time, and storage overhead. We show from our experimental results that both CISR scheme and SISR scheme are better than sequential scan in terms of retrieval performance and SISR scheme is especially superior to the CISR scheme.

ECoMOT : An Efficient Content-based Multimedia Information Retrieval System Using Moving Objects' Trajectories in Video Data (ECoMOT : 비디오 데이터내의 이동체의 제적을 이용한 효율적인 내용 기반 멀티미디어 정보검색 시스템)

  • Shim Choon-Bo;Chang Jae-Woo;Shin Yong-Won;Park Byung-Rae
    • The KIPS Transactions:PartB
    • /
    • v.12B no.1 s.97
    • /
    • pp.47-56
    • /
    • 2005
  • A moving object has a various features that its spatial location, shape, and size are changed as time goes. In addition, the moving object has both temporal feature and spatial feature. It is one of the highly interested feature information in video data. In this paper, we propose an efficient content-based multimedia information retrieval system, so tailed ECoMOT which enables user to retrieve video data by using a trajectory information of moving objects in video data. The ECoMOT includes several novel techniques to achieve content-based retrieval using moving objects' trajectories : (1) Muitiple trajectory modeling technique to model the multiple trajectories composed of several moving objects; (2) Multiple similar trajectory retrieval technique to retrieve more similar trajectories by measuring similarity between a given two trajectories composed of several moving objects; (3) Superimposed signature-based trajectory indexing technique to effectively search corresponding trajectories from a large trajectory databases; (4) convenient trajectory extraction, query generation, and retrieval interface based on graphic user interface

Video Retrieval based on Objects Motion Trajectory (객체 이동 궤적 기반 비디오의 검색)

  • 유웅식;이규원;김재곤;김진웅;권오석
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.25 no.5B
    • /
    • pp.913-924
    • /
    • 2000
  • This paper proposes an efficient descriptor for objects motion trajectory and a video retrieval algorithm based on objects motion trajectory. The algorithm describes parameters with coefficients of 2-order polynomial for objects motion trajectory after segmentation of the object from the scene. The algorithm also identifies types, intervals, and magnitude of global motion caused by camera motion and indexes them with 6-affine parameters. This paper implements content-based video retrieval using similarity-match between indexed parameters and queried ones for objects motion trajectory. The proposed algorithm will support not only faster retrieval for general videos but efficient operation for unmanned video surveillance system.

  • PDF

Similar sub-Trajectory Retrieval Technique based on Grid for Video Data (비디오 데이타를 위한 그리드 기반의 유사 부분 궤적 검색 기법)

  • Lee, Ki-Young;Lim, Myung-Jae;Kim, Kyu-Ho;Kim, Joung-Joon
    • The Journal of the Institute of Internet, Broadcasting and Communication
    • /
    • v.9 no.5
    • /
    • pp.183-189
    • /
    • 2009
  • Recently, PCS, PDA and mobile devices, such as the proliferation of spread, GPS (Global Positioning System) the use of, the rapid development of wireless network and a regular user even images, audio, video, multimedia data, such as increased use is for. In particular, video data among multimedia data, unlike the moving object, text or image data that contains information about the movements and changes in the space of time, depending on the kinds of changes that have sigongganjeok attributes. Spatial location of objects on the flow of time, changing according to the moving object (Moving Object) of the continuous movement trajectory of the meeting is called, from the user from the database that contains a given query trajectory and data trajectory similar to the finding of similar trajectory Search (Similar Sub-trajectory Retrieval) is called. To search for the trajectory, and these variations, and given the similar trajectory of the user query (Tolerance) in the search for a similar trajectory to approximate data matching (Approximate Matching) should be available. In addition, a large multimedia data from the database that you only want to be able to find a faster time-effective ways to search different from the existing research is required. To this end, in this paper effectively divided into a grid to search for the trajectory to the trajectory of moving objects, similar to the effective support of the search trajectory offers a new grid-based search techniques.

  • PDF

Moving Objects Modeling for Supporting Content and Similarity Searches (내용 및 유사도 검색을 위한 움직임 객체 모델링)

  • 복경수;김미희;신재룡;유재수;조기형
    • Journal of Korea Multimedia Society
    • /
    • v.7 no.5
    • /
    • pp.617-632
    • /
    • 2004
  • Video Data includes moving objects which change spatial positions as time goes by. In this paper, we propose a new modeling method for a moving object contained in the video data. In order to effectively retrieve moving objects, the proposed modeling method represents the spatial position and the size of a moving object. It also represents the visual features and the trajectory by considering direction, distance and speed or moving objects as time goes by. Therefore, It allows various types of retrieval such as visual feature based similarity retrieval, distance based similarity retrieval and trajectory based similarity retrieval and their mixed type of weighted retrieval.

  • PDF

VRTEC : Multi-step Retrieval Model for Content-based Video Query (VRTEC : 내용 기반 비디오 질의를 위한 다단계 검색 모델)

  • 김창룡
    • Journal of the Korean Institute of Telematics and Electronics T
    • /
    • v.36T no.1
    • /
    • pp.93-102
    • /
    • 1999
  • In this paper, we propose a data model and a retrieval method for content-based video query After partitioning a video into frame sets of same length which is called video-window, each video-window can be mapped to a point in a multidimensional space. A video can be represented a trajectory by connection of neighboring video-window in a multidimensional space. The similarity between two video-windows is defined as the euclidean distance of two points in multidimensional space, and the similarity between two video segments of arbitrary length is obtained by comparing corresponding trajectory. A new retrieval method with filtering and refinement step if developed, which return correct results and makes retrieval speed increase by 4.7 times approximately in comparison to a method without filtering and refinement step.

  • PDF

Spatio-Temporal Index Structure for Trajectory Queries of Moving Objects in Video (비디오에서 이동 객체의 궤적 검색을 위한 시공간 색인구조)

  • Lee, Nak-Gyu;Bok, Kyoung-Soo;Yoo, Jae-Soo;Cho, Ki-Hyung
    • The KIPS Transactions:PartD
    • /
    • v.11D no.1
    • /
    • pp.69-82
    • /
    • 2004
  • A moving object has a special feature that it's spatial location, shape and size are changed as time goes. These changes of the object accompany the continuous movement that is called the trajectory. In this paper, we propose an index structure that users can retrieve the trajectory of a moving object with the access of a page. We also propose the multi-complex query that is a new query type for trajectory retrieval. In order to prove the excellence of our method, we compare and analyze the performance for query time and storage space through experiments in various environments. It is shown that our method outperforms the existing index structures when processing spatio-temporal trajectory queries on moving objects.

Content-Based Video Retrieval Algorithms using Spatio-Temporal Information about Moving Objects (객체의 시공간적 움직임 정보를 이용한 내용 기반 비디오 검색 알고리즘)

  • Jeong, Jong-Myeon;Moon, Young-Shik
    • Journal of KIISE:Software and Applications
    • /
    • v.29 no.9
    • /
    • pp.631-644
    • /
    • 2002
  • In this paper efficient algorithms for content-based video retrieval using motion information are proposed, including temporal scale-invariant retrieval and temporal scale-absolute retrieval. In temporal scale-invariant video retrieval, the distance transformation is performed on each trail image in database. Then, from a given que교 trail the pixel values along the query trail are added in each distance image to compute the average distance between the trails of query image and database image, since the intensity of each pixel in distance image represents the distance from that pixel to the nearest edge pixel. For temporal scale-absolute retrieval, a new coding scheme referred to as Motion Retrieval Code is proposed. This code is designed to represent object motions in the human visual sense so that the retrieval performance can be improved. The proposed coding scheme can also achieve a fast matching, since the similarity between two motion vectors can be computed by simple bit operations. The efficiencies of the proposed methods are shown by experimental results.

Temporal Texture modeling for Video Retrieval (동영상 검색을 위한 템포럴 텍스처 모델링)

  • Kim, Do-Nyun;Cho, Dong-Sub
    • The Transactions of the Korean Institute of Electrical Engineers D
    • /
    • v.50 no.3
    • /
    • pp.149-157
    • /
    • 2001
  • In the video retrieval system, visual clues of still images and motion information of video are employed as feature vectors. We generate the temporal textures to express the motion information whose properties are simple expression, easy to compute. We make those temporal textures of wavelet coefficients to express motion information, M components. Then, temporal texture feature vectors are extracted using spatial texture feature vectors, i.e. spatial gray-level dependence. Also, motion amount and motion centroid are computed from temporal textures. Motion trajectories provide the most important information for expressing the motion property. In our modeling system, we can extract the main motion trajectory from the temporal textures.

  • PDF