• Title/Summary/Keyword: Trajectory Management

Search Result 168, Processing Time 0.026 seconds

Agent-based Speed Management Strategy for Freeway Traffic Safety (Methodology and Evaluation) (고속도로 교통사고 예방을 위한 에이전트 기반 속도관리 전략 (방법론 및 평가))

  • Song, Tae-Jin;O, Cheol
    • Journal of Korean Society of Transportation
    • /
    • v.29 no.4
    • /
    • pp.17-28
    • /
    • 2011
  • This study proposed a speed management strategy for the enhancement of traffic safety on freeways. A novel feature of the proposed strategy is to provide desirable speed information to individual vehicles. A microscopic traffic simulator, VISSIM, was used for the performance evaluation. Vehicle trajectory data were used to evaluate the various speed management scenarios including the different levels of proportions of heavy vehicles. The proposed speed management strategy would be a useful precursor for developing an effective traffic control and operations system to prevent traffic accidents on freeways.

Establishment of Safety Alert Systems for Urban Air Mobility Operations (도심항공교통(UAM) 운항을 위한 안전 경고 기능 구축)

  • Sang-il Choi;Seung-yeon Nam;Hui-yang Kim
    • Journal of Advanced Navigation Technology
    • /
    • v.28 no.2
    • /
    • pp.163-171
    • /
    • 2024
  • In the existing air traffic management (ATM) system, various types of safety alert features are provided based on trajectory data to ensure the safety of aircraft operations, along with aircraft position and detailed flight information. The urban air traffic management (UATM) system for urban air mobility (UAM) should also provide safety alert features to ensure the safety of UAM operations. Considering the operational environment of UAM, it is necessary that the safety alert features provided at least match or exceed those available in the existing ATM system. This study aims to present the safety alert features of the new UATM system that differ from those provided by the existing ATM system before introduction and commercialization of UAM. The study was conducted focusing on the safety alert features that should be provided in the event of a deviation from the UAM's path, and the establishment of the safety alert features was carried out in two parts: approach path monitor (APM), which is applied during the approach phase, and route adherence monitoring (RAM), which is applied during the cruise phase.

A Study on 3D Indoor mapping for as-built BIM creation by using Graph-based SLAM (준공 BIM 구축을 위한 Graph-based SLAM 기반의 실내공간 3차원 지도화 연구)

  • Jung, Jaehoon;Yoon, Sanghyun;Cyrill, Stachniss;Heo, Joon
    • Korean Journal of Construction Engineering and Management
    • /
    • v.17 no.3
    • /
    • pp.32-42
    • /
    • 2016
  • In Korea, the absence of BIM use in existing civil structures and buildings is driving a demand for as-built BIM. As-built BIMs are often created using laser scanners that provide dense 3D point cloud data. Conventional static laser scanning approaches often suffer from limitations in their operability due to the difficulties in moving the equipment, the selection of scanning location, and the requirement of placing targets or extracting tie points for registration of each scanned point cloud. This paper aims at reducing the manual effort using a kinematic 3D laser scanning system based on graph-based simultaneous localization and mapping (SLAM) for continuous indoor mapping. The robotic platform carries three 2D laser scanners: the front scanner is mounted horizontally to compute the robot's trajectory and to build the SLAM graph; the other two scanners are mounted vertically to scan the profiles of surrounding environments. To reduce the accumulated error in the trajectory of the platform through loop closures, the graph-based SLAM system incorporates AdaBoost loop closure approach, which is particularly suitable for the developed multi-scanner system providing more features than the single-scanner system for training. We implemented the proposed method and evaluated it in two indoor test sites. Our experimental results show that the false positive rate was reduced by 13.6% and 7.9% for the two dataset. Finally, the 2D and 3D mapping results of the two test sites confirmed the effectiveness of the proposed graph-based SLAM.

An Analysis on Influences of Seasonal and Tidal Changes to Outfall Design and Management (조석이 방류관의 설계 및 운영에 미치는 영향 분석)

  • Kim, Ji-Yeon;Lee, Joong-Woo
    • Journal of Navigation and Port Research
    • /
    • v.28 no.3
    • /
    • pp.259-268
    • /
    • 2004
  • For the last years, it has become hot issue such as disposal of the treated wastewater, which caused by increment of a population and industrial development at the coastal areas. The ocean outfall system discharges primary or secondary treated effluent into coastline or at the deep water, or between these two. The effluent, which has a density similar to that of fresh water, rises to the see, surface forming plume or jet, together with entraining the surrounding salt water and becomes very dilute. This paper deals ocean outfall design which effects to decision-making about marine environment management and wastewater treatment. In order to make predictions of dilution of discharged water and the trajectory of a plume, CORMIX has been used considering several elements including a seasonal and tidal changes. These solutions are strung together to provide basic data and general drawings for effective management of outfall.

AprilTag and Stereo Visual Inertial Odometry (A-SVIO) based Mobile Assets Localization at Indoor Construction Sites

  • Khalid, Rabia;Khan, Muhammad;Anjum, Sharjeel;Park, Junsung;Lee, Doyeop;Park, Chansik
    • International conference on construction engineering and project management
    • /
    • 2022.06a
    • /
    • pp.344-352
    • /
    • 2022
  • Accurate indoor localization of construction workers and mobile assets is essential in safety management. Existing positioning methods based on GPS, wireless, vision, or sensor based RTLS are erroneous or expensive in large-scale indoor environments. Tightly coupled sensor fusion mitigates these limitations. This research paper proposes a state-of-the-art positioning methodology, addressing the existing limitations, by integrating Stereo Visual Inertial Odometry (SVIO) with fiducial landmarks called AprilTags. SVIO determines the relative position of the moving assets or workers from the initial starting point. This relative position is transformed to an absolute position when AprilTag placed at various entry points is decoded. The proposed solution is tested on the NVIDIA ISAAC SIM virtual environment, where the trajectory of the indoor moving forklift is estimated. The results show accurate localization of the moving asset within any indoor or underground environment. The system can be utilized in various use cases to increase productivity and improve safety at construction sites, contributing towards 1) indoor monitoring of man machinery coactivity for collision avoidance and 2) precise real-time knowledge of who is doing what and where.

  • PDF

An Unusual Case of Cerebral Penetrating Injury by a Driven Bone Fragment Secondary to Blunt Head Trauma

  • Lee, Jae-Il;Ko, Jun-Kyeung;Cha, Seung-Heon;Han, In-Ho
    • Journal of Korean Neurosurgical Society
    • /
    • v.50 no.6
    • /
    • pp.532-534
    • /
    • 2011
  • Temple trauma that appears initially localized to the skin might possess intracranial complications. Early diagnosis and management of such complications are important, to avoid neurologic sequelae. Non-penetrating head injuries with intracranial hemorrhage caused by a driven bone fragment are extremely rare. A 53-year-old male was referred to our hospital because of intracerebral hemorrhage. He was a mechanic and one day before admission to a local clinic, tip of metallic rod hit his right temple while cutting the rod. Initial brain computed tomography (CT) and magnetic resonance imaging demonstrated scanty subdural hematoma at right temporal lobe and left falx and intracerebral hematoma at both frontal lobes. Facial CT with 3-D reconstruction images showed a small bony defect at the right sphenoid bone's greater wing and a small bone fragment at the left frontal lobe, crossing the falx. We present the unusual case of a temple trauma patient in whom a sphenoid bone fragment migrated from its origin upward, to the contralateral frontal lobe, producing hematoma along its trajectory.

The Effect of Advice Information for Arriving Aircraft Landing Order on Air Traffic Controller's Work Efficiency (도착항공기 착륙순서에 관한 조언정보가 관제사 업무효율에 미치는 영향)

  • Kim, Seyeon;Chai, Hongah;Jung, Hyuntae;Kim, Huiyang;Lee, Keumjin
    • Journal of the Korean Society for Aviation and Aeronautics
    • /
    • v.26 no.3
    • /
    • pp.23-31
    • /
    • 2018
  • This paper describes the effect of advice information for arriving aircraft landing order on the air traffic controller's work efficiency. The air traffic control simulator used in the experiment was modeled on the basis of the aircraft parameters from BADA, gamma-command model and the 4-dimensional trajectory using the Bezier curve. The simulation results show that advice information was helpful for the performance of the work for users who did not have the air traffic control training. On the other hand, in case of users who have experience in air traffic control training, the work efficiency was lowered when the advisory information that does not reflect the user's intention is provided. Therefore, it can be seen that the effect of improving the work efficiency through advice information can be limited depending on the skill level of the air traffic controllers and the complexity of the air traffic situation.

Software-Defined Cloud-based Vehicular Networks with Task Computation Management

  • Nkenyereye, Lionel;Jang, Jong-Wook
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2018.05a
    • /
    • pp.419-421
    • /
    • 2018
  • Cloud vehicular networks are a promising paradigm to improve vehicular through distributing computation tasks between remote clouds and local vehicular terminals. Software-Defined Network(SDN) can bring advantages to Intelligent Transportation System(ITS) through its ability to provide flexibility and programmability through a logically centralized controlled cluster that has a full comprehension of view of the network. However, as the SDN paradigm is currently studied in vehicular ad hoc networks(VANETs), adapting it to work on cloud-based vehicular network requires some changes to address particular computation features such as task computation of applications of cloud-based vehicular networks. There has been initial work on briging SDN concepts to vehicular networks to reduce the latency by using the fog computing technology, but most of these studies do not directly tackle the issue of task computation. This paper proposes a Software-Defined Cloud-based vehicular Network called SDCVN framework. In this framework, we study the effectiveness of task computation of applications of cloud-based vehicular networks with vehicular cloud and roadside edge cloud. Considering the edge cloud service migration due to the vehicle mobility, we present an efficient roadside cloud based controller entity scheme where the tasks are adaptively computed through vehicular cloud mode or roadside computing predictive trajectory decision mode. Simulation results show that our proposal demonstrates a stable and low route setup time in case of installing the forwarding rules of the routing applications because the source node needs to contact the controller once to setup the route.

  • PDF

Software-Defined Cloud-based Vehicular Networks with Task Computation Management

  • Nkenyereye, Lionel;Jang, Jong-Wook
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2018.05a
    • /
    • pp.238-240
    • /
    • 2018
  • Cloud vehicular networks are a promising paradigm to improve vehicular through distributing computation tasks between remote clouds and local vehicular terminals. Software-Defined Network(SDN) can bring advantages to Intelligent Transportation System(ITS) through its ability to provide flexibility and programmability through a logically centralized controlled cluster that has a full comprehension of view of the network. However, as the SDN paradigm is currently studied in vehicular ad hoc networks(VANETs), adapting it to work on cloud-based vehicular network requires some changes to address particular computation features such as task computation of applications of cloud-based vehicular networks. There has been initial work on briging SDN concepts to vehicular networks to reduce the latency by using the fog computing technology, but most of these studies do not directly tackle the issue of task computation. This paper proposes a Software-Defined Cloud-based vehicular Network called SDCVN framework. In this framework, we study the effectiveness of task computation of applications of cloud-based vehicular networks with vehicular cloud and roadside edge cloud. Considering the edge cloud service migration due to the vehicle mobility, we present an efficient roadside cloud based controller entity scheme where the tasks are adaptively computed through vehicular cloud mode or roadside computing predictive trajectory decision mode. Simulation results show that our proposal demonstrates a stable and low route setup time in case of installing the forwarding rules of the routing applications because the source node needs to contact the controller once to setup the route.

  • PDF

EFFICIENT MANAGEMENT OF VERY LARGE MOVING OBJECTS DATABASE

  • Lee, Seong-Ho;Lee, Jae-Ho;An, Kyoung-Hwan;Park, Jong-Hyun
    • Proceedings of the KSRS Conference
    • /
    • v.2
    • /
    • pp.725-727
    • /
    • 2006
  • The development of GIS and Location-Based Services requires a high-level database that will be able to allow real-time access to moving objects for spatial and temporal operations. MODB.MM is able to meet these requirements quite adequately, providing operations with the abilities of acquiring, storing, and querying large-scale moving objects. It enables a dynamic and diverse query mechanism, including searches by region, trajectory, and temporal location of a large number of moving objects that may change their locations with time variation. Furthermore, MODB.MM is designed to allow for performance upon main memory and the system supports the migration on out-of-date data from main memory to disk. We define the particular query for truncation of moving objects data and design two migration methods so as to operate the main memory moving objects database system and file-based location storage system with.

  • PDF