• Title/Summary/Keyword: Trajectories

Search Result 1,435, Processing Time 0.027 seconds

A Time Interval Index for Tracking Trajectories of RFID Tags : SLR-Tree (RFID 태그의 이력 추적을 위한 시간 간격 색인 : SLR-트리)

  • Ryu, Woo-Seok;Ahn, Sung-Woo;Hong, Bong-Hee;Ban, Chae-Hoon;Lee, Se-Ho
    • Journal of KIISE:Databases
    • /
    • v.34 no.1
    • /
    • pp.59-69
    • /
    • 2007
  • The trajectory of a tag in RFID system is represented as a interval that connects two spatiotemporal locations captured when the tag enters and leaves the vicinity of a reader. Whole trajectories of a tag are represented as a set of unconnected interval because the location of the tag which left the vicinity of a reader is unknown until it enters the vicinity of another reader. The problems are that trajectories of a tag are not connected. It takes a long time to find trajectories of a tag because it leads to searching the whole index. To solve this problem, we propose a technique that links two intervals of the tag and an index scheme called SLR-tree. We also propose a sharing technique of link information between two intervals which enhances space utilization of nodes, and propose a split policy that preserves shared-link information. And finally, we evaluate the performance of the proposed index and prove that the index processes history queries efficiently.

An Intersection Validation and Interference Elimination Algorithm between Weapon Trajectories in Multi-target and Multi-weapon Environments (다표적-다무장 환경에서 무장 궤적 간 교차 검증 및 간섭 배제 알고리즘)

  • Yoon, Moonhyung;Park, Junho;Yi, JeongHoon;Kim, Kapsoo;Koo, BongJoo
    • The Journal of the Korea Contents Association
    • /
    • v.18 no.9
    • /
    • pp.614-622
    • /
    • 2018
  • As multiple weapons are fired simultaneously in multi-target and multi-weapon environments, a possibility always exists in the collision occurred by the intersection between weapon trajectories. The collision between weapons not only hinders the rapid reaction but also causes the loss of the asset of weapons of friendly force to weaken the responsive power against the threat by an enemy. In this paper, we propose an intersection validation and interference elimination algorithm between weapon trajectories in multi-target and multi-weapon environments. The core points of our algorithm are to confirm the possible interference through the analysis on the intersections between weapon trajectories and to eliminate the mutual interference. To show the superiority of our algorithm, we implement the evaluation and verification of performances through the simulation and visualization of our algorithm. Our experimental results show that the proposed algorithm performs effectively the interference elimination regardless of the number of targets and weapon groups by showing that no cross point exists.

A Data Mining Tool for Massive Trajectory Data (대규모 궤적 데이타를 위한 데이타 마이닝 툴)

  • Lee, Jae-Gil
    • Journal of KIISE:Computing Practices and Letters
    • /
    • v.15 no.3
    • /
    • pp.145-153
    • /
    • 2009
  • Trajectory data are ubiquitous in the real world. Recent progress on satellite, sensor, RFID, video, and wireless technologies has made it possible to systematically track object movements and collect huge amounts of trajectory data. Accordingly, there is an ever-increasing interest in performing data analysis over trajectory data. In this paper, we develop a data mining tool for massive trajectory data. This mining tool supports three operations, clustering, classification, and outlier detection, which are the most widely used ones. Trajectory clustering discovers common movement patterns, trajectory classification predicts the class labels of moving objects based on their trajectories, and trajectory outlier detection finds trajectories that are grossly different from or inconsistent with the remaining set of trajectories. The primary advantage of the mining tool is to take advantage of the information of partial trajectories in the process of data mining. The effectiveness of the mining tool is shown using various real trajectory data sets. We believe that we have provided practical software for trajectory data mining which can be used in many real applications.

Searching Human Motion Data by Sketching 3D Trajectories (3차원 이동 궤적 묘사를 통한 인간 동작 데이터 검색)

  • Lee, Kang Hoon
    • Journal of the Korea Computer Graphics Society
    • /
    • v.19 no.2
    • /
    • pp.1-8
    • /
    • 2013
  • Captured human motion data has been widely utilized for understanding the mechanism of human motion and synthesizing the animation of virtual characters. Searching for desired motions from given motion data is an important prerequisite of analyzing and editing those selected motions. This paper presents a new method of content-based motion retrieval without the need of additional metadata such as keywords. While existing search methods have focused on skeletal configurations of body pose or planar trajectories of locomotion, our method receives a three-dimensional trajectory as its input query and retrieves a set of motion intervals in which the trajectories of body parts such as hands, foods, and pelvis are similar to the input trajectory. In order to allow the user to intuitively sketch spatial trajectories, we used the Leap Motion controller that can precisely trace finger movements as the input device for our experiments. We have evaluated the effectiveness of our approach by conducting a user study in which the users search for dozens of pre-selected motions from baseketball motion data including a variety of moves such as dribbling and shooting.

Policies of Trajectory Clustering in Index based on R-trees for Moving Objects (이동체를 위한 R-트리 기반 색인에서의 궤적 클러스터링 정책)

  • Ban ChaeHoon;Kim JinGon;Jun BongGi;Hong BongHee
    • The KIPS Transactions:PartD
    • /
    • v.12D no.4 s.100
    • /
    • pp.507-520
    • /
    • 2005
  • The R-trees are usually used for an index of trajectories in moving-objects databases. However, they need to access a number of nodes to trace same trajectories because of considering only a spatial proximity. Overlaps and dead spaces should be minimized to enhance the performance of range queries in moving-objects indexes. Trajectories of moving-objects should be preserved to enhance the performance of the trajectory queries. In this paper, we propose the TP3DR-tree(Trajectory Preserved 3DR-tree) using clusters of trajectories for range and trajectory queries. The TP3DR-tree uses two split policies: one is a spatial splitting that splits the same trajectory by clustering and the other is a time splitting that increases space utilization. In addition, we use connecting information in non-leaf nodes to enhance the performance of combined-queries. Our experiments show that the new index outperforms the others in processing queries on various datasets.

A new Clustering Algorithm for GPS Trajectories with Maximum Overlap Interval (최대 중첩구간을 이용한 새로운 GPS 궤적 클러스터링)

  • Kim, Taeyong;Park, Bokuk;Park, Jinkwan;Cho, Hwan-Gue
    • KIISE Transactions on Computing Practices
    • /
    • v.22 no.9
    • /
    • pp.419-425
    • /
    • 2016
  • In navigator systems, keeping map data up-to-date is an important task. Manual update involves a substantial cost and it is difficult to achieve immediate reflection of changes with manual updates. In this paper, we present a method for trajectory-center extraction, which is essential for automatic road map generation with GPS data. Though clustered trajectories are necessary to extract the center road, real trajectories are not clustered. To address this problem, this paper proposes a new method using the maximum overlapping interval and trajectory clustering. Finally, we apply the Virtual Running method to extract the center road from the clustered trajectories. We conducted experiments on real massive taxi GPS data sets collected throughout Gang-Nam-Gu, Sung-Nam city and all parts of Seoul city. Experimental results showed that our method is stable and efficient for extracting the center trajectory of real roads.

A Network-based Indexing Method for Trajectories of Moving Objects on Roads (도로 위에 존재하는 이동객체의 궤적에 대한 네트워크 기반의 색인 방법)

  • Kim, Kyoung-Sook;Li, Ki-Joune
    • The KIPS Transactions:PartD
    • /
    • v.13D no.7 s.110
    • /
    • pp.879-888
    • /
    • 2006
  • Recently many researchers have focused on management of Historical trajectories of moving objects in Euclidean spaces due to numerous sizes of accumulated data over time. However, the movement of moving objects in real applications generally has some constraints, for example vehicles on roads can only travel along connected road networks. In this paper, we propose an indexing method for trajectories of moving objects on road networks in order to process the network-based spatiotemporal range query. Our method contains the connect information of road networks to use the network distance for query processing, deals with trajectories which are represented by road segments in road networks, and manages them using multiple R-trees assigned per each road segment. Furthermore, it has a structure to be able to share R-tree among several road segments in large road networks. Consequently, we show that our method takes about 30% less in node accesses for the network-based spatiotemporal range query processing than other methods based on the Euclidean distance by experiments.

Detecting Road Intersections using Partially Similar Trajectories of Moving Objects (이동 객체의 부분 유사궤적 탐색을 활용한 교차로 검출 기법)

  • Park, Bokuk;Park, Jinkwan;Kim, Taeyong;Cho, Hwan-Gue
    • Journal of KIISE
    • /
    • v.43 no.4
    • /
    • pp.404-410
    • /
    • 2016
  • Automated road map generation poses significant research challenges since GPS-based navigation systems prevail in most general vehicles. This paper proposes an automated detecting method for intersection points using GPS vehicle trajectory data without any background digital map information. The proposed method exploits the fact that the trajectories are generally split into several branches at an intersection point. One problem in previous work on this intersection detecting is that those approaches require stopping points and direction changes for every testing vehicle. However our approach does not require such complex auxiliary information for intersection detecting. Our method is based on partial trajectory matching among trajectories since a set of incoming trajectories split other trajectory cluster branches at the intersection point. We tested our method on a real GPS data set with 1266 vehicles in Gangnam District, Seoul. Our experiment showed that the proposed method works well at some bigger intersection points in Gangnam. Our system scored 75% sensitivity and 78% specificity according to the test data. We believe that more GPS trajectory data would make our system more reliable and applicable in a practice.

Longitudinal Trajectories of Computer Game Use among School Age Children: Using Latent Class Growth Model (학령기 아동의 게임 사용시간 변화궤적 분석 : 잠재계층성장분석(LCGM)을 활용하여)

  • Kim, Dong Ha
    • Korean Journal of Social Welfare Studies
    • /
    • v.48 no.2
    • /
    • pp.303-329
    • /
    • 2017
  • This study aimed to explore the trajectories of computer game use of school age children and to identify the related predictors. The data for this study used Korean Children and Youth Panel data covering from the second year to the sixth year of elementary school. A total of 1,959 participants were analyzed. Latent class growth model was employed to explore the trajectories of computer game use and multinomial logistic regression was conducted to identify the significant predictors. Main results indicated that three types of trajectories were identified: low game using group, high initial using-fluctuating group, and high increasing game using group. Each group was found to be associated deferentially with sex, aggression, attention deficit, main caregiver's education, siblings, parent absence after-school, neglecting, family income, family trip, school grades, and peer relationship. Based on these findings, this study emphasized the importance of predictive intervention for the game user among early school age children and suggested useful practical strategies.

Identifying and Predicting Adolescent Smoking Trajectories in Korea (청소년기 흡연 발달궤적 변화와 예측요인)

  • Chung, Ick-joong
    • Korean Journal of Social Welfare Studies
    • /
    • no.39
    • /
    • pp.5-28
    • /
    • 2008
  • The purpose of this study is two-fold: 1) to identify different adolescent smoking trajectories in Korea; and 2) to examine predictors of those smoking trajectories within a social developmental frame. Data were from the Korea Youth Panel Survey(KYPS), a longitudinal study of 3,449 youths followed since 2003. Using semi-parametric group-based modeling, four smoking trajectories were identified: non initiators, late onsetters, experimenters, and escalators. Multinomial logistic regressions were then used to identify risk and protective factors that distinguish the trajectory groups from one another. Among non smokers at age 13, late onsetters were distinguished from non initiators by a variety of factors in every ecological domain. Among youths who already smoked at age 13, escalators who increased their smoking were distinguished from experimenters who almost desisted from smoking by age 17 by self-esteem and academic achievement. Finally, implications for youth welfare practice from this study were discussed.