Purpose: This study examined whether 1) the motor inhibition response as cognitive-behavioral component is learning though a stop signal task using stop-signal paradigm, and 2) whether there is a difference in the learning degree according to imagery training and actual practice training. Methods: Twenty young adults (males: 9, females: 11) volunteered to participate in this study, and were divided randomly into motor imagery training (IT, n=10) and practice training (PT, n=10) groups. The PT group performed an actual practice stop-signal task, while the IT group performed imagery training, which showed a stop-signal task on a monitor of a personal computer. The non-signal reaction time and stop-signal reaction time of both groups were assessed during the stop-signal task. Results: In the non-signal reaction time, there were no significant intra-group and inter-group differences between pre- and post-intervention in both groups (p>0.05). The stop-signal reaction time showed a significant difference in the PT group in the intra-group analysis (p<0.05). On the other hand, there was no significant intra-group difference in the IT group and inter-group difference between pre- and post-intervention (p>0.05). Conclusion: These results showed that the motor inhibition response could be learned through a stop-signal task. Moreover, these findings suggest that actual practice is a more effective method for learning the motor inhibition response.
KSII Transactions on Internet and Information Systems (TIIS)
/
v.16
no.5
/
pp.1755-1777
/
2022
The development of wireless communication technology has led to the underutilization of radio spectra. To address this limitation, an intelligent cognitive radio network was developed. Specific emitter identification (SEI) is a key technology in this network. However, in realistic non-cooperative scenarios, the system may detect signal classes beyond those in the training database, and only a few labeled signal samples are available for network training, both of which deteriorate identification performance. To overcome these challenges, a meta-learning-based open-set identification system is proposed for SEI. First, the received signals were pre-processed using bi-spectral analysis and a Radon transform to obtain signal representation vectors, which were then fed into an open-set SEI network. This network consisted of a deep feature extractor and an intrinsic feature memorizer that can detect signals of unknown classes and classify signals of different known classes. The training loss functions and the procedures of the open-set SEI network were then designed for parameter optimization. Considering the few-shot problems of open-set SEI, meta-training loss functions and meta-training procedures that require only a few labeled signal samples were further developed for open-set SEI network training. The experimental results demonstrate that this approach outperforms other state-of-the-art SEI methods in open-set scenarios. In addition, excellent open-set SEI performance was achieved using at least 50 training signal samples, and effective operation in low signal-to-noise ratio (SNR) environments was demonstrated.
Using the net analyte signal, hybrid linear analysis was proposed to predict chemical concentration. In this paper, we select a sample from training set and apply orthogonal signal correction to obtain an improved pseudo unit spectrum for hybrid least analysis. using the mean spectrum of a calibration training set, we first show the calibration by hybrid least analysis is effective to the prediction of not only chemical concentrations but also physical property variables. Then, a pseudo unit spectrum from a training set is also tested with and without orthogonal signal correction. We use two data sets, one including five chemical concentrations and the other including ten physical property variables, to compare the performance of partial least squares and modified hybrid least analysis calibration methods. The results show that the hybrid least analysis with a selected training spectrum instead of well-measured pure spectrum still gives good performances, which is a little better than partial least squares.
The Journal of Korean Institute of Communications and Information Sciences
/
v.32
no.3C
/
pp.331-337
/
2007
In this paper, we propose a novel Walsh coded training signal design and Walsh decoding method to estimate the channel response in MIMO-OFDM systems. The Walsh coded training signals are designed to have orthogonal property in time domain. Using the orthogonal property, the Walsh decoding process makes it possible to separate the desired training signal from the received signal and to estimate the channel response. The computer simulation results show that the proposed method exhibits almost the same performance as Li's original method using the optimal training sequence, even though the proposed method has much lower complexity.
Journal of the Institute of Convergence Signal Processing
/
v.24
no.2
/
pp.90-96
/
2023
Securing large amounts of training data in deep learning neural networks, including convolutional neural networks, is of importance for avoiding overfitting phenomenon or for the excellent performance. However, securing labeled training data in deep learning neural networks is very limited in reality. To overcome this, several augmentation methods have been proposed in the literature to generate an additional large amount of training data through transformation or manipulation of the already acquired traing data. However, unlike training data such as images and texts, it is barely to find an augmentation method in the literature that additionally generates bio-signal training data for convolutional neural network based human activity recognition. Thus, this study proposes a simple but effective augmentation method of bio-signal training data for convolutional neural network based human activity recognition. The usefulness of the proposed augmentation method is validated by showing that human activity is recognized with high accuracy by convolutional neural network trained with its augmented bio-signal training data.
This paper presents the training system of myoelectric hand prosthesis controlling according to myoelectric signal generated in the human muscle. The training system consist of a trainer, a program for training. The experimental results proved the reliability of proposed training system.
KSII Transactions on Internet and Information Systems (TIIS)
/
v.14
no.12
/
pp.4664-4681
/
2020
Modulation recognition (MR) plays a key role in cognitive radar, cognitive radio, and some other civilian and military fields. While existing methods can identify the signal modulation type by extracting the signal characteristics, the quality of feature extraction has a serious impact on the recognition results. In this paper, an end-to-end MR method based on long short-term memory (LSTM) and the gated recurrent unit (GRU) is put forward, which can directly predict the modulation type from a sampled signal. Additionally, the sliding window method is applied to fast-changing mixed-modulation signals for which the signal modulation type changes over time. The recognition accuracy on training datasets in different SNR ranges and the proportion of each modulation method in misclassified samples are analyzed, and it is found to be reasonable to select the evenly-distributed and full range of SNR data as the training data. With the improvement of the SNR, the recognition accuracy increases rapidly. When the length of the training dataset increases, the neural network recognition effect is better. The loss function value of the neural network decreases with the increase of the training dataset length, and then tends to be stable. Moreover, when the fast-changing period is less than 20ms, the error rate is as high as 50%. As the fast-changing period is increased to 30ms, the error rates of the GRU and LSTM neural networks are less than 5%.
An, Jing-Long;Han, Tian;Yang, Bo-Suk;Jeon, Jae-Jin;Kim, Won-Cheol
Transactions of the Korean Society for Noise and Vibration Engineering
/
v.12
no.10
/
pp.799-807
/
2002
The vibration signal can give an indication of the condition of rotating machinery, highlighting potential faults such as unbalance, misalignment and bearing defects. The features in the vibration signal provide an important source of information for the faults diagnosis of rotating machinery. When additional training data become available after the initial training is completed, the conventional neural networks (NNs) must be retrained by applying total data including additional training data. This paper proposes the fault diagnostics algorithm using the ART-Kohonen network which does not destroy the initial training and can adapt additional training data that is suitable for the classification of machine condition. The results of the experiments confirm that the proposed algorithm performs better than other NNs as the self-organizing feature maps (SOFM) , learning vector quantization (LYQ) and radial basis function (RBF) NNs with respect to classification quality. The classification success rate for the ART-Kohonen network was 94 o/o and for the SOFM, LYQ and RBF network were 93 %, 93 % and 89 % respectively.
This study is concerned with a method which helps human to generate EMG signals accurately and consistently to make reliable design samples of function discriminator for prosthetic arm control. We intend to ensure a signal accuracy and consistency by training human as a signal generation source. For the purposes, we construct a human training system using a digital computer, which generates visual graphes to compare real target motion trajectory with the desired one, to observe EMG signals and their features. To evaluate the effect which affects a feature variance and a feature separability between motion classes by the human training system, we select 4 features such as integral absolute value, zero crossing counts, AR coefficients and LPC cepstrum coefficients. We perform a experiment four times during 2 months. The experimental results show that the hu- man training system is effective for accurate and consistent EMG signal generation and reduction of a feature variance, but is not correlated for a feature separability, The cepstrum coefficient is the most preferable among the used features for reduction of variance, class separability and robustness to a time varing property of EMG signals.
Superimposed training (SIT) design for estimating of time-varying multipath channels is investigated for mobile orthogonal frequency division multiplexing (OFDM) systems. The design of optimum SIT consists of two parts: The optimal SIT sequence is derived by minimizing the channel estimates' mean square error (MSE); the optimal power allocation between training and information data is developed by maximizing the averaged signal to interference plus noise ratio (SINR) under the condition of equal powered paths. The theoretical analysis is verified by simulations. For the metric of the averaged SINR against signal to noise ratio (SNR), the theoretical result matches the simulation result perfectly. In contrast to an interpolated frequency-multiplexing training (FMT) scheme or an SIT scheme with random pilot sequence, the SIT scheme with proposed optimal sequence achieves higher SINR. The analytical solution of the optimal power allocation is demonstrated by the simulation as well.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.