• Title/Summary/Keyword: Training database

Search Result 477, Processing Time 0.023 seconds

Effect of digital therapies on balance and gait in children with cerebral palsy: A systematic review (디지털 치료제가 뇌성마비 아동의 균형 및 보행에 미치는 효과: 체계적 고찰)

  • Jung-Hyun Kim
    • Journal of Korean Physical Therapy Science
    • /
    • v.30 no.4
    • /
    • pp.92-110
    • /
    • 2023
  • Background: Digital therapeutics are software medical devices that provide evidence-based treatments to prevent, manage, and treat disease. Digital therapies have recently been shown to be effective in motivating children with cerebral palsy as a tool in neuropsychological therapy. Digital therapies improve postural control, balance and gait in children with cerebral palsy. Therefore, this study aims to investigate the effects of digital therapies on balance and gait in children with cerebral palsy and to provide guidelines for prescribing digital therapies for children with cerebral palsy. Design: A Systematic Review Methods: This study searched for English-language articles published in medical journals from January 2000 to July 2023 using PubMed and MEDLINE based on the year of initiation of the digital therapy. The search terms used in the study were 'digital technology' OR 'digital therapeutic' OR 'mobile application' OR 'mobile health' OR 'virtual reality' OR 'game' AND 'cerebral palsy', 'balance' 'gait' as the main keywords. The final article was assigned an evidence level and a Physiotherapy Evidence Database (PEDro) score to assess the quality of clinical trials studies. Results: The digital therapies applied to improve balance and gait in children with cerebral palsy are game-based virtual reality training and the Nintendo Wii Fit program. Both digital therapy interventions had a significant effect on improving balance in children with cerebral palsy, and virtual reality training significantly improved balance and gait. However, there were no significant improvements in balance and gait within two weeks of treatment, regardless of the type of digital intervention. Conclusion: The study suggests that this data will be important in building the evidence base for the effectiveness of digital therapies on balance and gait in children with cerebral palsy and in advancing clinical protocols.

Application of the optimal fuzzy-based system on bearing capacity of concrete pile

  • Kun Zhang;Yonghua Zhang;Behnaz Razzaghzadeh
    • Steel and Composite Structures
    • /
    • v.51 no.1
    • /
    • pp.25-41
    • /
    • 2024
  • The measurement of pile bearing capacity is crucial for the design of pile foundations, where in-situ tests could be costly and time needed. The primary objective of this research was to investigate the potential use of fuzzy-based techniques to anticipate the maximum weight that concrete driven piles might bear. Despite the existence of several suggested designs, there is a scarcity of specialized studies on the exploration of adaptive neuro-fuzzy inference systems (ANFIS) for the estimation of pile bearing capacity. This paper presents the introduction and validation of a novel technique that integrates the fire hawk optimizer (FHO) and equilibrium optimizer (EO) with the ANFIS, referred to as ANFISFHO and ANFISEO, respectively. A comprehensive compilation of 472 static load test results for driven piles was located within the database. The recommended framework was built, validated, and tested using the training set (70%), validation set (15%), and testing set (15%) of the dataset, accordingly. Moreover, the sensitivity analysis is performed in order to determine the impact of each input on the output. The results show that ANFISFHO and ANFISEO both have amazing potential for precisely calculating pile bearing capacity. The R2 values obtained for ANFISFHO were 0.9817, 0.9753, and 0.9823 for the training, validating, and testing phases. The findings of the examination of uncertainty showed that the ANFISFHO system had less uncertainty than the ANFISEO model. The research found that the ANFISFHO model provides a more satisfactory estimation of the bearing capacity of concrete driven piles when considering various performance evaluations and comparing it with existing literature.

IPMN-LEARN: A linear support vector machine learning model for predicting low-grade intraductal papillary mucinous neoplasms

  • Yasmin Genevieve Hernandez-Barco;Dania Daye;Carlos F. Fernandez-del Castillo;Regina F. Parker;Brenna W. Casey;Andrew L. Warshaw;Cristina R. Ferrone;Keith D. Lillemoe;Motaz Qadan
    • Annals of Hepato-Biliary-Pancreatic Surgery
    • /
    • v.27 no.2
    • /
    • pp.195-200
    • /
    • 2023
  • Backgrounds/Aims: We aimed to build a machine learning tool to help predict low-grade intraductal papillary mucinous neoplasms (IPMNs) in order to avoid unnecessary surgical resection. IPMNs are precursors to pancreatic cancer. Surgical resection remains the only recognized treatment for IPMNs yet carries some risks of morbidity and potential mortality. Existing clinical guidelines are imperfect in distinguishing low-risk cysts from high-risk cysts that warrant resection. Methods: We built a linear support vector machine (SVM) learning model using a prospectively maintained surgical database of patients with resected IPMNs. Input variables included 18 demographic, clinical, and imaging characteristics. The outcome variable was the presence of low-grade or high-grade IPMN based on post-operative pathology results. Data were divided into a training/validation set and a testing set at a ratio of 4:1. Receiver operating characteristics analysis was used to assess classification performance. Results: A total of 575 patients with resected IPMNs were identified. Of them, 53.4% had low-grade disease on final pathology. After classifier training and testing, a linear SVM-based model (IPMN-LEARN) was applied on the validation set. It achieved an accuracy of 77.4%, with a positive predictive value of 83%, a specificity of 72%, and a sensitivity of 83% in predicting low-grade disease in patients with IPMN. The model predicted low-grade lesions with an area under the curve of 0.82. Conclusions: A linear SVM learning model can identify low-grade IPMNs with good sensitivity and specificity. It may be used as a complement to existing guidelines to identify patients who could avoid unnecessary surgical resection.

The development of four efficient optimal neural network methods in forecasting shallow foundation's bearing capacity

  • Hossein Moayedi;Binh Nguyen Le
    • Computers and Concrete
    • /
    • v.34 no.2
    • /
    • pp.151-168
    • /
    • 2024
  • This research aimed to appraise the effectiveness of four optimization approaches - cuckoo optimization algorithm (COA), multi-verse optimization (MVO), particle swarm optimization (PSO), and teaching-learning-based optimization (TLBO) - that were enhanced with an artificial neural network (ANN) in predicting the bearing capacity of shallow foundations located on cohesionless soils. The study utilized a database of 97 laboratory experiments, with 68 experiments for training data sets and 29 for testing data sets. The ANN algorithms were optimized by adjusting various variables, such as population size and number of neurons in each hidden layer, through trial-and-error techniques. Input parameters used for analysis included width, depth, geometry, unit weight, and angle of shearing resistance. After performing sensitivity analysis, it was determined that the optimized architecture for the ANN structure was 5×5×1. The study found that all four models demonstrated exceptional prediction performance: COA-MLP, MVO-MLP, PSO-MLP, and TLBO-MLP. It is worth noting that the MVO-MLP model exhibited superior accuracy in generating network outputs for predicting measured values compared to the other models. The training data sets showed R2 and RMSE values of (0.07184 and 0.9819), (0.04536 and 0.9928), (0.09194 and 0.9702), and (0.04714 and 0.9923) for COA-MLP, MVO-MLP, PSO-MLP, and TLBO-MLP methods respectively. Similarly, the testing data sets produced R2 and RMSE values of (0.08126 and 0.07218), (0.07218 and 0.9814), (0.10827 and 0.95764), and (0.09886 and 0.96481) for COA-MLP, MVO-MLP, PSO-MLP, and TLBO-MLP methods respectively.

Database Security System supporting Access Control for Various Sizes of Data Groups (다양한 크기의 데이터 그룹에 대한 접근 제어를 지원하는 데이터베이스 보안 시스템)

  • Jeong, Min-A;Kim, Jung-Ja;Won, Yong-Gwan;Bae, Suk-Chan
    • The KIPS Transactions:PartD
    • /
    • v.10D no.7
    • /
    • pp.1149-1154
    • /
    • 2003
  • Due to various requirements for the user access control to large databases in the hospitals and the banks, database security has been emphasized. There are many security models for database systems using wide variety of policy-based access control methods. However, they are not functionally enough to meet the requirements for the complicated and various types of access control. In this paper, we propose a database security system that can individually control user access to data groups of various sites and is suitable for the situation where the user's access privilege to arbitrary data is changed frequently. Data group(s) in different sixes d is defined by the table name(s), attribute(s) and/or record key(s), and the access privilege is defined by security levels, roles and polices. The proposed system operates in two phases. The first phase is composed of a modified MAC (Mandatory Access Control) model and RBAC (Role-Based Access Control) model. A user can access any data that has lower or equal security levels, and that is accessible by the roles to which the user is assigned. All types of access mode are controlled in this phase. In the second phase, a modified DAC(Discretionary Access Control) model is applied to re-control the 'read' mode by filtering out the non-accessible data from the result obtained at the first phase. For this purpose, we also defined the user group s that can be characterized by security levels, roles or any partition of users. The policies represented in the form of Block(s, d, r) were also defined and used to control access to any data or data group(s) that is not permitted in 'read ' mode. With this proposed security system, more complicated 'read' access to various data sizes for individual users can be flexibly controlled, while other access mode can be controlled as usual. An implementation example for a database system that manages specimen and clinical information is presented.

Classifier Selection using Feature Space Attributes in Local Region (국부적 영역에서의 특징 공간 속성을 이용한 다중 인식기 선택)

  • Shin Dong-Kuk;Song Hye-Jeong;Kim Baeksop
    • Journal of KIISE:Software and Applications
    • /
    • v.31 no.12
    • /
    • pp.1684-1690
    • /
    • 2004
  • This paper presents a method for classifier selection that uses distribution information of the training samples in a small region surrounding a sample. The conventional DCS-LA(Dynamic Classifier Selection - Local Accuracy) selects a classifier dynamically by comparing the local accuracy of each classifier at the test time, which inevitably requires long classification time. On the other hand, in the proposed approach, the best classifier in a local region is stored in the FSA(Feature Space Attribute) table during the training time, and the test is done by just referring to the table. Therefore, this approach enables fast classification because classification is not needed during test. Two feature space attributes are used entropy and density of k training samples around each sample. Each sample in the feature space is mapped into a point in the attribute space made by two attributes. The attribute space is divided into regular rectangular cells in which the local accuracy of each classifier is appended. The cells with associated local accuracy comprise the FSA table. During test, when a test sample is applied, the cell to which the test sample belongs is determined first by calculating the two attributes, and then, the most accurate classifier is chosen from the FSA table. To show the effectiveness of the proposed algorithm, it is compared with the conventional DCS -LA using the Elena database. The experiments show that the accuracy of the proposed algorithm is almost same as DCS-LA, but the classification time is about four times faster than that.

Real-Time Face Recognition Based on Subspace and LVQ Classifier (부분공간과 LVQ 분류기에 기반한 실시간 얼굴 인식)

  • Kwon, Oh-Ryun;Min, Kyong-Pil;Chun, Jun-Chul
    • Journal of Internet Computing and Services
    • /
    • v.8 no.3
    • /
    • pp.19-32
    • /
    • 2007
  • This paper present a new face recognition method based on LVQ neural net to construct a real time face recognition system. The previous researches which used PCA, LDA combined neural net usually need much time in training neural net. The supervised LVQ neural net needs much less time in training and can maximize the separability between the classes. In this paper, the proposed method transforms the input face image by PCA and LDA sequentially into low-dimension feature vectors and recognizes the face through LVQ neural net. In order to make the system robust to external light variation, light compensation is performed on the detected face by max-min normalization method as preprocessing. PCA and LDA transformations are applied to the normalized face image to produce low-level feature vectors of the image. In order to determine the initial centers of LVQ and speed up the convergency of the LVQ neural net, the K-Means clustering algorithm is adopted. Subsequently, the class representative vectors can be produced by LVQ2 training using initial center vectors. The face recognition is achieved by using the euclidean distance measure between the center vector of classes and the feature vector of input image. From the experiments, we can prove that the proposed method is more effective in the recognition ratio for the cases of still images from ORL database and sequential images rather than using conventional PCA of a hybrid method with PCA and LDA.

  • PDF

Realization a Text Independent Speaker Identification System with Frame Level Likelihood Normalization (프레임레벨유사도정규화를 적용한 문맥독립화자식별시스템의 구현)

  • 김민정;석수영;김광수;정현열
    • Journal of the Institute of Convergence Signal Processing
    • /
    • v.3 no.1
    • /
    • pp.8-14
    • /
    • 2002
  • In this paper, we realized a real-time text-independent speaker recognition system using gaussian mixture model, and applied frame level likelihood normalization method which shows its effects in verification system. The system has three parts as front-end, training, recognition. In front-end part, cepstral mean normalization and silence removal method were applied to consider speaker's speaking variations. In training, gaussian mixture model was used for speaker's acoustic feature modeling, and maximum likelihood estimation was used for GMM parameter optimization. In recognition, likelihood score was calculated with speaker models and test data at frame level. As test sentences, we used text-independent sentences. ETRI 445 and KLE 452 database were used for training and test, and cepstrum coefficient and regressive coefficient were used as feature parameters. The experiment results show that the frame-level likelihood method's recognition result is higher than conventional method's, independently the number of registered speakers.

  • PDF

A study on end-to-end speaker diarization system using single-label classification (단일 레이블 분류를 이용한 종단 간 화자 분할 시스템 성능 향상에 관한 연구)

  • Jaehee Jung;Wooil Kim
    • The Journal of the Acoustical Society of Korea
    • /
    • v.42 no.6
    • /
    • pp.536-543
    • /
    • 2023
  • Speaker diarization, which labels for "who spoken when?" in speech with multiple speakers, has been studied on a deep neural network-based end-to-end method for labeling on speech overlap and optimization of speaker diarization models. Most deep neural network-based end-to-end speaker diarization systems perform multi-label classification problem that predicts the labels of all speakers spoken in each frame of speech. However, the performance of the multi-label-based model varies greatly depending on what the threshold is set to. In this paper, it is studied a speaker diarization system using single-label classification so that speaker diarization can be performed without thresholds. The proposed model estimate labels from the output of the model by converting speaker labels into a single label. To consider speaker label permutations in the training, the proposed model is used a combination of Permutation Invariant Training (PIT) loss and cross-entropy loss. In addition, how to add the residual connection structures to model is studied for effective learning of speaker diarization models with deep structures. The experiment used the Librispech database to generate and use simulated noise data for two speakers. When compared with the proposed method and baseline model using the Diarization Error Rate (DER) performance the proposed method can be labeling without threshold, and it has improved performance by about 20.7 %.

Incremental Face Annotation for Open Web Service (개방형 웹 서버스를 위한 증가적 얼굴 어노테이션)

  • Chai, Kwon-Taeg;Byun, Hye-Ran
    • Journal of KIISE:Software and Applications
    • /
    • v.36 no.8
    • /
    • pp.673-682
    • /
    • 2009
  • Recently, photo sharing and publishing based Social Network Sites(SNSs) are increasingly attracting the attention of academic and industry researches. Unlike the face recognition environment addressed by existing works, face annotation problem under SNSs is differentiated in terms of daily updated images database, a limited number of training set and millions of users. Thus, conventional approach may not deal with these problems. In this paper, we proposed a face annotation method for sharing and publishing photographs that contain faces under a social network service using random projection, non-linear regression and representational state transfer. Our experiments on several databases show that the proposed method records an almost constant execution time with comparable accuracy of the PCA-SVM classifier.