• Title/Summary/Keyword: Training Samples

Search Result 571, Processing Time 0.043 seconds

Support Vector Machine Based on Type-2 Fuzzy Training Samples

  • Ha, Ming-Hu;Huang, Jia-Ying;Yang, Yang;Wang, Chao
    • Industrial Engineering and Management Systems
    • /
    • v.11 no.1
    • /
    • pp.26-29
    • /
    • 2012
  • In order to deal with the classification problems of type-2 fuzzy training samples on generalized credibility space. Firstly the type-2 fuzzy training samples are reduced to ordinary fuzzy samples by the mean reduction method. Secondly the definition of strong fuzzy linear separable data for type-2 fuzzy samples on generalized credibility space is introduced. Further, by utilizing fuzzy chance-constrained programming and classic support vector machine, a support vector machine based on type-2 fuzzy training samples and established on generalized credibility space is given. An example shows the efficiency of the support vector machine.

Robust Face Recognition under Limited Training Sample Scenario using Linear Representation

  • Iqbal, Omer;Jadoon, Waqas;ur Rehman, Zia;Khan, Fiaz Gul;Nazir, Babar;Khan, Iftikhar Ahmed
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.12 no.7
    • /
    • pp.3172-3193
    • /
    • 2018
  • Recently, several studies have shown that linear representation based approaches are very effective and efficient for image classification. One of these linear-representation-based approaches is the Collaborative representation (CR) method. The existing algorithms based on CR have two major problems that degrade their classification performance. First problem arises due to the limited number of available training samples. The large variations, caused by illumintion and expression changes, among query and training samples leads to poor classification performance. Second problem occurs when an image is partially noised (contiguous occlusion), as some part of the given image become corrupt the classification performance also degrades. We aim to extend the collaborative representation framework under limited training samples face recognition problem. Our proposed solution will generate virtual samples and intra-class variations from training data to model the variations effectively between query and training samples. For robust classification, the image patches have been utilized to compute representation to address partial occlusion as it leads to more accurate classification results. The proposed method computes representation based on local regions in the images as opposed to CR, which computes representation based on global solution involving entire images. Furthermore, the proposed solution also integrates the locality structure into CR, using Euclidian distance between the query and training samples. Intuitively, if the query sample can be represented by selecting its nearest neighbours, lie on a same linear subspace then the resulting representation will be more discriminate and accurately classify the query sample. Hence our proposed framework model the limited sample face recognition problem into sufficient training samples problem using virtual samples and intra-class variations, generated from training samples that will result in improved classification accuracy as evident from experimental results. Moreover, it compute representation based on local image patches for robust classification and is expected to greatly increase the classification performance for face recognition task.

Characterization of Korean Clays and Pottery by Neutron Activation Analysis (III). A Classification Rule for Unknown Korean Ancient Potsherds

  • Lee, Chul;Kwun, Oh-Cheun;Jung, Dae-Il;Lee, Ihn-Chong;Kim, Nak-Bae
    • Bulletin of the Korean Chemical Society
    • /
    • v.7 no.6
    • /
    • pp.438-442
    • /
    • 1986
  • A number of Korean potsherd samples has been classified by Fisher's discriminant method for the training set of Kyungki, Koryung and Kyungnam groups. The Koryung samples have been further classified for the training set of Koryung A, B and C subgroups. The training sets have been used to define classification of unknown samples and clay samples so as to find out some similarity between clay samples and certain potsherd groups.

Study on the Effect of Discrepancy of Training Sample Population in Neural Network Classification

  • Lee, Sang-Hoon;Kim, Kwang-Eun
    • Korean Journal of Remote Sensing
    • /
    • v.18 no.3
    • /
    • pp.155-162
    • /
    • 2002
  • Neural networks have been focused on as a robust classifier for the remotely sensed imagery due to its statistical independency and teaming ability. Also the artificial neural networks have been reported to be more tolerant to noise and missing data. However, unlike the conventional statistical classifiers which use the statistical parameters for the classification, a neural network classifier uses individual training sample in teaming stage. The training performance of a neural network is know to be very sensitive to the discrepancy of the number of the training samples of each class. In this paper, the effect of the population discrepancy of training samples of each class was analyzed with three layered feed forward network. And a method for reducing the effect was proposed and experimented with Landsat TM image. The results showed that the effect of the training sample size discrepancy should be carefully considered for faster and more accurate training of the network. Also, it was found that the proposed method which makes teaming rate as a function of the number of training samples in each class resulted in faster and more accurate training of the network.

Accuracy Assessment of Supervised Classification using Training Samples Acquired by a Field Spectroradiometer: A Case Study for Kumnam-myun, Sejong City (지상 분광반사자료를 훈련샘플로 이용한 감독분류의 정확도 평가: 세종시 금남면을 사례로)

  • Shin, Jung Il;Kim, Ik Jae;Kim, Dong Wook
    • Journal of Korean Society for Geospatial Information Science
    • /
    • v.24 no.1
    • /
    • pp.121-128
    • /
    • 2016
  • Many studies are focused on image data and classifier for comparison or improvement of classification accuracy. Therefore studies are needed aspect of the training samples on supervised classification which depend on reference data or skill of analyst. This study tries to assess usability of field spectra as training samples on supervised classification. Classification accuracies of hyperspectral and multispectral images were assessed using training samples from image itself and field spectra, respectively. The results shown about 90% accuracy with training sample collected from image. Using field spectra as training sample, accuracy was decreased 10%p for hyperspectral image, and 20%p for multispectral image. Especially, some classes shown very low accuracies due to similar spectral characteristics on multispectral image. Therefore, field spectra might be used as training samples on classification of hyperspectral image, although it has limitation for multispectral image.

Meta learning-based open-set identification system for specific emitter identification in non-cooperative scenarios

  • Xie, Cunxiang;Zhang, Limin;Zhong, Zhaogen
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.16 no.5
    • /
    • pp.1755-1777
    • /
    • 2022
  • The development of wireless communication technology has led to the underutilization of radio spectra. To address this limitation, an intelligent cognitive radio network was developed. Specific emitter identification (SEI) is a key technology in this network. However, in realistic non-cooperative scenarios, the system may detect signal classes beyond those in the training database, and only a few labeled signal samples are available for network training, both of which deteriorate identification performance. To overcome these challenges, a meta-learning-based open-set identification system is proposed for SEI. First, the received signals were pre-processed using bi-spectral analysis and a Radon transform to obtain signal representation vectors, which were then fed into an open-set SEI network. This network consisted of a deep feature extractor and an intrinsic feature memorizer that can detect signals of unknown classes and classify signals of different known classes. The training loss functions and the procedures of the open-set SEI network were then designed for parameter optimization. Considering the few-shot problems of open-set SEI, meta-training loss functions and meta-training procedures that require only a few labeled signal samples were further developed for open-set SEI network training. The experimental results demonstrate that this approach outperforms other state-of-the-art SEI methods in open-set scenarios. In addition, excellent open-set SEI performance was achieved using at least 50 training signal samples, and effective operation in low signal-to-noise ratio (SNR) environments was demonstrated.

Robust Online Object Tracking via Convolutional Neural Network (합성곱 신경망을 통한 강건한 온라인 객체 추적)

  • Gil, Jong In;Kim, Manbae
    • Journal of Broadcast Engineering
    • /
    • v.23 no.2
    • /
    • pp.186-196
    • /
    • 2018
  • In this paper, we propose an on-line tracking method using convolutional neural network (CNN) for tracking object. It is well known that a large number of training samples are needed to train the model offline. To solve this problem, we use an untrained model and update the model by collecting training samples online directly from the test sequences. While conventional methods have been used to learn models by training samples offline, we demonstrate that a small group of samples are sufficient for online object tracking. In addition, we define a loss function containing color information, and prevent the model from being trained by wrong training samples. Experiments validate that tracking performance is equivalent to four comparative methods or outperforms them.

Deterministic and probabilistic analysis of tunnel face stability using support vector machine

  • Li, Bin;Fu, Yong;Hong, Yi;Cao, Zijun
    • Geomechanics and Engineering
    • /
    • v.25 no.1
    • /
    • pp.17-30
    • /
    • 2021
  • This paper develops a convenient approach for deterministic and probabilistic evaluations of tunnel face stability using support vector machine classifiers. The proposed method is comprised of two major steps, i.e., construction of the training dataset and determination of instance-based classifiers. In step one, the orthogonal design is utilized to produce representative samples after the ranges and levels of the factors that influence tunnel face stability are specified. The training dataset is then labeled by two-dimensional strength reduction analyses embedded within OptumG2. For any unknown instance, the second step applies the training dataset for classification, which is achieved by an ad hoc Python program. The classification of unknown samples starts with selection of instance-based training samples using the k-nearest neighbors algorithm, followed by the construction of an instance-based SVM-KNN classifier. It eventually provides labels of the unknown instances, avoiding calculate its corresponding performance function. Probabilistic evaluations are performed by Monte Carlo simulation based on the SVM-KNN classifier. The ratio of the number of unstable samples to the total number of simulated samples is computed and is taken as the failure probability, which is validated and compared with the response surface method.

Video augmentation technique for human action recognition using genetic algorithm

  • Nida, Nudrat;Yousaf, Muhammad Haroon;Irtaza, Aun;Velastin, Sergio A.
    • ETRI Journal
    • /
    • v.44 no.2
    • /
    • pp.327-338
    • /
    • 2022
  • Classification models for human action recognition require robust features and large training sets for good generalization. However, data augmentation methods are employed for imbalanced training sets to achieve higher accuracy. These samples generated using data augmentation only reflect existing samples within the training set, their feature representations are less diverse and hence, contribute to less precise classification. This paper presents new data augmentation and action representation approaches to grow training sets. The proposed approach is based on two fundamental concepts: virtual video generation for augmentation and representation of the action videos through robust features. Virtual videos are generated from the motion history templates of action videos, which are convolved using a convolutional neural network, to generate deep features. Furthermore, by observing an objective function of the genetic algorithm, the spatiotemporal features of different samples are combined, to generate the representations of the virtual videos and then classified through an extreme learning machine classifier on MuHAVi-Uncut, iXMAS, and IAVID-1 datasets.

Classification in Different Genera by Cytochrome Oxidase Subunit I Gene Using CNN-LSTM Hybrid Model

  • Meijing Li;Dongkeun Kim
    • Journal of information and communication convergence engineering
    • /
    • v.21 no.2
    • /
    • pp.159-166
    • /
    • 2023
  • The COI gene is a sequence of approximately 650 bp at the 5' terminal of the mitochondrial Cytochrome c Oxidase subunit I (COI) gene. As an effective DeoxyriboNucleic Acid (DNA) barcode, it is widely used for the taxonomic identification and evolutionary analysis of species. We created a CNN-LSTM hybrid model by combining the gene features partially extracted by the Long Short-Term Memory ( LSTM ) network with the feature maps obtained by the CNN. Compared to K-Means Clustering, Support Vector Machines (SVM), and a single CNN classification model, after training 278 samples in a training set that included 15 genera from two orders, the CNN-LSTM hybrid model achieved 94% accuracy in the test set, which contained 118 samples. We augmented the training set samples and four genera into four orders, and the classification accuracy of the test set reached 100%. This study also proposes calculating the cosine similarity between the training and test sets to initially assess the reliability of the predicted results and discover new species.