• Title/Summary/Keyword: Training Performance

Search Result 4,606, Processing Time 0.034 seconds

Study on the Prediction of Motion Response of Fishing Vessels using Recurrent Neural Networks (순환 신경망 모델을 이용한 소형어선의 운동응답 예측 연구)

  • Janghoon Seo;Dong-Woo Park;Dong Nam
    • Journal of the Korean Society of Marine Environment & Safety
    • /
    • v.29 no.5
    • /
    • pp.505-511
    • /
    • 2023
  • In the present study, a deep learning model was established to predict the motion response of small fishing vessels. Hydrodynamic performances were evaluated for two small fishing vessels for the dataset of deep learning model. The deep learning model of the Long Short-Term Memory (LSTM) which is one of the recurrent neural network was utilized. The input data of LSTM model consisted of time series of six(6) degrees of freedom motions and wave height and the output label was selected as the time series data of six(6) degrees of freedom motions. The hyperparameter and input window length studies were performed to optimize LSTM model. The time series motion response according to different wave direction was predicted by establised LSTM. The predicted time series motion response showed good overall agreement with the analysis results. As the length of the time series increased, differences between the predicted values and analysis results were increased, which is due to the reduced influence of long-term data in the training process. The overall error of the predicted data indicated that more than 85% of the data showed an error within 10%. The established LSTM model is expected to be utilized in monitoring and alarm systems for small fishing vessels.

Deep-Learning Seismic Inversion using Laplace-domain wavefields (라플라스 영역 파동장을 이용한 딥러닝 탄성파 역산)

  • Jun Hyeon Jo;Wansoo Ha
    • Geophysics and Geophysical Exploration
    • /
    • v.26 no.2
    • /
    • pp.84-93
    • /
    • 2023
  • The supervised learning-based deep-learning seismic inversion techniques have demonstrated successful performance in synthetic data examples targeting small-scale areas. The supervised learning-based deep-learning seismic inversion uses time-domain wavefields as input and subsurface velocity models as output. Because the time-domain wavefields contain various types of wave information, the data size is considerably large. Therefore, research applying supervised learning-based deep-learning seismic inversion trained with a significant amount of field-scale data has not yet been conducted. In this study, we predict subsurface velocity models using Laplace-domain wavefields as input instead of time-domain wavefields to apply a supervised learning-based deep-learning seismic inversion technique to field-scale data. Using Laplace-domain wavefields instead of time-domain wavefields significantly reduces the size of the input data, thereby accelerating the neural network training, although the resolution of the results is reduced. Additionally, a large grid interval can be used to efficiently predict the velocity model of the field data size, and the results obtained can be used as the initial model for subsequent inversions. The neural network is trained using only synthetic data by generating a massive synthetic velocity model and Laplace-domain wavefields of the same size as the field-scale data. In addition, we adopt a towed-streamer acquisition geometry to simulate a marine seismic survey. Testing the trained network on numerical examples using the test data and a benchmark model yielded appropriate background velocity models.

Deletion-Based Sentence Compression Using Sentence Scoring Reflecting Linguistic Information (언어 정보가 반영된 문장 점수를 활용하는 삭제 기반 문장 압축)

  • Lee, Jun-Beom;Kim, So-Eon;Park, Seong-Bae
    • KIPS Transactions on Software and Data Engineering
    • /
    • v.11 no.3
    • /
    • pp.125-132
    • /
    • 2022
  • Sentence compression is a natural language processing task that generates concise sentences that preserves the important meaning of the original sentence. For grammatically appropriate sentence compression, early studies utilized human-defined linguistic rules. Furthermore, while the sequence-to-sequence models perform well on various natural language processing tasks, such as machine translation, there have been studies that utilize it for sentence compression. However, for the linguistic rule-based studies, all rules have to be defined by human, and for the sequence-to-sequence model based studies require a large amount of parallel data for model training. In order to address these challenges, Deleter, a sentence compression model that leverages a pre-trained language model BERT, is proposed. Because the Deleter utilizes perplexity based score computed over BERT to compress sentences, any linguistic rules and parallel dataset is not required for sentence compression. However, because Deleter compresses sentences only considering perplexity, it does not compress sentences by reflecting the linguistic information of the words in the sentences. Furthermore, since the dataset used for pre-learning BERT are far from compressed sentences, there is a problem that this can lad to incorrect sentence compression. In order to address these problems, this paper proposes a method to quantify the importance of linguistic information and reflect it in perplexity-based sentence scoring. Furthermore, by fine-tuning BERT with a corpus of news articles that often contain proper nouns and often omit the unnecessary modifiers, we allow BERT to measure the perplexity appropriate for sentence compression. The evaluations on the English and Korean dataset confirm that the sentence compression performance of sentence-scoring based models can be improved by utilizing the proposed method.

Clinical Practice Experience including Web-based Simulation Practice of Nursing Students during the COVID-19 Pandemic (코로나19 팬데믹 시기에 간호대학생의 웹 기반 시뮬레이션 실습을 포함한 임상 실습 경험)

  • Kim, Kyung Sook;Park, Ji Min
    • Journal of Convergence for Information Technology
    • /
    • v.12 no.2
    • /
    • pp.81-93
    • /
    • 2022
  • The purpose of this study is to understand the meaning of clinical practice experience, including web-based simulation practice, in the context of the corona pandemic era. As for the research method, data were collected through a focus group interview on the experience of web-based simulation practice and subsequent clinical practice and analyzed by content analysis method. The contents of the two interview groups were analyzed, and the results were divided into 2 components, 7 topic groups, and 18 topics. The first component, the clinical practice, was divided into four topic groups: 'The anxious start of practice in a pandemic situation', 'Direct experience through various cases', 'Training opportunities to prepare as a future nurse', and 'The burden of performance and limited experience'. The second component, the web-based simulation practice, was divided into three topic groups: 'Unfinished nursing practice', 'Indirect experience of clinical nursing in virtual space', and 'Requirement of an integrated practice model'. Clinical practice is a very important part of the nursing education curriculum. However, the nursing that students can perform in the field is very limited. Therefore, to supplement the shortcomings of observation-oriented clinical practice and to increase the quality of practical education, it is necessary to consider a hybrid education model including web-based simulation practice.

A Comparison of Image Classification System for Building Waste Data based on Deep Learning (딥러닝기반 건축폐기물 이미지 분류 시스템 비교)

  • Jae-Kyung Sung;Mincheol Yang;Kyungnam Moon;Yong-Guk Kim
    • The Journal of the Institute of Internet, Broadcasting and Communication
    • /
    • v.23 no.3
    • /
    • pp.199-206
    • /
    • 2023
  • This study utilizes deep learning algorithms to automatically classify construction waste into three categories: wood waste, plastic waste, and concrete waste. Two models, VGG-16 and ViT (Vision Transformer), which are convolutional neural network image classification algorithms and NLP-based models that sequence images, respectively, were compared for their performance in classifying construction waste. Image data for construction waste was collected by crawling images from search engines worldwide, and 3,000 images, with 1,000 images for each category, were obtained by excluding images that were difficult to distinguish with the naked eye or that were duplicated and would interfere with the experiment. In addition, to improve the accuracy of the models, data augmentation was performed during training with a total of 30,000 images. Despite the unstructured nature of the collected image data, the experimental results showed that VGG-16 achieved an accuracy of 91.5%, and ViT achieved an accuracy of 92.7%. This seems to suggest the possibility of practical application in actual construction waste data management work. If object detection techniques or semantic segmentation techniques are utilized based on this study, more precise classification will be possible even within a single image, resulting in more accurate waste classification

Short-Term Precipitation Forecasting based on Deep Neural Network with Synthetic Weather Radar Data (기상레이더 강수 합성데이터를 활용한 심층신경망 기반 초단기 강수예측 기술 연구)

  • An, Sojung;Choi, Youn;Son, MyoungJae;Kim, Kwang-Ho;Jung, Sung-Hwa;Park, Young-Youn
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2021.05a
    • /
    • pp.43-45
    • /
    • 2021
  • The short-term quantitative precipitation prediction (QPF) system is important socially and economically to prevent damage from severe weather. Recently, many studies for short-term QPF model applying the Deep Neural Network (DNN) has been conducted. These studies require the sophisticated pre-processing because the mistreatment of various and vast meteorological data sets leads to lower performance of QPF. Especially, for more accurate prediction of the non-linear trends in precipitation, the dataset needs to be carefully handled based on the physical and dynamical understands the data. Thereby, this paper proposes the following approaches: i) refining and combining major factors (weather radar, terrain, air temperature, and so on) related to precipitation development in order to construct training data for pattern analysis of precipitation; ii) producing predicted precipitation fields based on Convolutional with ConvLSTM. The proposed algorithm was evaluated by rainfall events in 2020. It is outperformed in the magnitude and strength of precipitation, and clearly predicted non-linear pattern of precipitation. The algorithm can be useful as a forecasting tool for preventing severe weather.

  • PDF

Analysis of achievement predictive factors and predictive AI model development - Focused on blended math classes (학업성취도 예측 요인 분석 및 인공지능 예측 모델 개발 - 블렌디드 수학 수업을 중심으로)

  • Ahn, Doyeon;Lee, Kwang-Ho
    • The Mathematical Education
    • /
    • v.61 no.2
    • /
    • pp.257-271
    • /
    • 2022
  • As information and communication technologies are being developed so rapidly, education research is actively conducted to provide optimal learning for each student using big data and artificial intelligence technology. In this study, using the mathematics learning data of elementary school 5th to 6th graders conducting blended mathematics classes, we tried to find out what factors predict mathematics academic achievement and developed an artificial intelligence model that predicts mathematics academic performance using the results. Math learning propensity, LMS data, and evaluation results of 205 elementary school students had analyzed with a random forest model. Confidence, anxiety, interest, self-management, and confidence in math learning strategy were included as mathematics learning disposition. The progress rate, number of learning times, and learning time of the e-learning site were collected as LMS data. For evaluation data, results of diagnostic test and unit test were used. As a result of the analysis it was found that the mathematics learning strategy was the most important factor in predicting low-achieving students among mathematics learning propensities. The LMS training data had a negligible effect on the prediction. This study suggests that an AI model can predict low-achieving students with learning data generated in a blended math class. In addition, it is expected that the results of the analysis will provide specific information for teachers to evaluate and give feedback to students.

The Influence of Trust in Physical Education Teachers and Immersion Experience in Physical Education Classes on Attitude and Satisfaction During Physical Education Classes (중학생의 체육교사에 대한 신뢰와 체육수업 몰입 경험이 체육교과 태도 및 수업만족에 미치는 영향)

  • Park, Yu-Chan
    • Journal of Korea Entertainment Industry Association
    • /
    • v.13 no.6
    • /
    • pp.187-202
    • /
    • 2019
  • The main goal of this study is to investigate influence of trust in physical education (PE) teachers and immersion experience in PE classes on attitude and satisfaction during PE classes. Total 863 middle school students in Gwang-ju metropolitan area were recruited by utilizing a convenience sampling method. All data were analyzed by using SPSS statistic program ver. 25.0 (frequency analysis, exploratory factor analysis, reliability analysis, correlation analysis, multiple regression analysis). Alpha was set at 0.05. The results of this study is summarized as in the following. First, all sub-factors of trust in the PE teachers partially positively or negatively influence sub-factors of attitude during PE classes. Second, sub-factors of satisfaction during PE classes were partially positively affected to trust in the PE teachers. Third, Attitude during PE Classes were found to have partial positive influence on immersion experience in PE classes. Fourth, sub-factors of immersion experience in PE classes have partial positive effect on the sub-factors of satisfaction during PE classes. Thus, in order to the positive attitude and greater satisfaction during PE classes, it is important to establish the trust of PE teachers through maintaining interaction with students, constructing better systemic class, and creating the class conditions based on considering students' ability. In addition, in order to enhance immersion experiences of students during PE classes, it is necessary to set up learning goals and tasks based on ability of students, to study various teaching method, and to make only focusing on the performance based PE classes without grading.

Tree Growth, Productivity, and Management Efficiency of High-Density Apple Orchards according to Training Systems in Korea (한국 밀식사과원의 정지전정에 따른 수체생장과 생산성 및 경영효율 비교)

  • Jung, H.W.;Kim, K.H.;Song, T.Y.;Hong, S.I.;Han, H.K.;Kim, K.K.;Shin, J.H.;Yeo, D.H.;Kim, B.C.;Park, J.K.
    • Journal of Practical Agriculture & Fisheries Research
    • /
    • v.19 no.1
    • /
    • pp.39-49
    • /
    • 2017
  • The present study conducted a comparison on tree growth and productivity of high-density apple orchards by several orchard management systems: making scaffolds by heading-back and thinning out pruning (T-1), maintaining scaffolds upward and bearing shoots downward (T-2), managing branches slightly upward without heading-back (T-3), keeping leaders downward and shoots pending (T-4), maintaining leaders high and branches horizontal with severe pinching (T-5), making leaders with lower branches vigorous and upper shoots pending (T-6), and controlling very high planting density with bending branches (T-7). In conclusion, the orchards of (T-5) and (T-6) management systems showed a superior performance in controlling tree growth, productivity, and quality of fruits. Also, superior management efficiency was obtained in the orchards of (T-5) and (T-6).

A Study on Dataset Generation Method for Korean Language Information Extraction from Generative Large Language Model and Prompt Engineering (생성형 대규모 언어 모델과 프롬프트 엔지니어링을 통한 한국어 텍스트 기반 정보 추출 데이터셋 구축 방법)

  • Jeong Young Sang;Ji Seung Hyun;Kwon Da Rong Sae
    • KIPS Transactions on Software and Data Engineering
    • /
    • v.12 no.11
    • /
    • pp.481-492
    • /
    • 2023
  • This study explores how to build a Korean dataset to extract information from text using generative large language models. In modern society, mixed information circulates rapidly, and effectively categorizing and extracting it is crucial to the decision-making process. However, there is still a lack of Korean datasets for training. To overcome this, this study attempts to extract information using text-based zero-shot learning using a generative large language model to build a purposeful Korean dataset. In this study, the language model is instructed to output the desired result through prompt engineering in the form of "system"-"instruction"-"source input"-"output format", and the dataset is built by utilizing the in-context learning characteristics of the language model through input sentences. We validate our approach by comparing the generated dataset with the existing benchmark dataset, and achieve 25.47% higher performance compared to the KLUE-RoBERTa-large model for the relation information extraction task. The results of this study are expected to contribute to AI research by showing the feasibility of extracting knowledge elements from Korean text. Furthermore, this methodology can be utilized for various fields and purposes, and has potential for building various Korean datasets.