The problem of the sentence-based pronunciation evaluation task is defined in the context of subjective criteria. Three subjective criteria (that is, the minimum subjective word score, the mean subjective word score, and first impression) are proposed and modeled with the combination of word-based assessment. Then, the subjective criteria are approximated with objective sentence pronunciation scores obtained with the combination of word-based metrics. No a priori studies of common mistakes are required, and class-based language models are used to incorporate incorrect and correct pronunciations. Incorrect pronunciations are automatically incorporated by making use of a competitive lexicon and the phonetic rules of students' mother and target languages. This procedure is applicable to any second language learning context, and subjective-objective sentence score correlations greater than or equal to 0.5 can be achieved when the proposed sentence-based pronunciation criteria are approximated with combinations of word-based scores. Finally, the subjective-objective sentence score correlations reported here are very comparable with those published elsewhere resulting from methods that require a priori studies of pronunciation errors.
Seo, Jong-Seok;Seo, Young-Hwan;Yoon, Duk-Hyun;Seo, Won-Chul;Ock, Young-Seok
The Journal of Fisheries Business Administration
/
v.46
no.3
/
pp.51-61
/
2015
The purpose of this study is to find food safety approach in the Eco-label Chain of Custody(CoC) which is only focused to traceability. Because, consumers want to be assured the certified seafood comes from sustainable fishery as well as hygienic. In order to this approach, we used Analytic Hierarchy Process(AHP) method as belows. We first understood the CoC criteria for using pair-wise comparison and analyzed and selected each Eco-label certifications and standards. Second, we carried out a survey to the targeted standard Marine Stewardship Council(MSC) CoC auditors all over the world and analyzed the priorities of food safety approach to 4 principles and 12 criteria belong the MSC CoC Standard. As the results, we found out that 'Management System' has the highest priority in the principles and 'Documentation' and 'Keeping Record' are the most important criteria for this approach. In addition, 'Training' and 'Identification' are also higher priority of criteria. So, we suggested food safety approach method for improvement of these criteria in conclusion based on discussion with specialist in this field.
Writing is a subjective and performative activity. Writing ability has multi-facets and compoundness. To understand the examinees's writing ability accurately and provide effective writing scores, raters first ought to have the competency regarding assessment. Therefore, this study is significant as a fundamental research about rater's characteristics on the TOPIK writing assessment. 150 scripts of the 47th TOPIK examinees were selected randomly, and were further rated independently by 20 raters. The many-facet Rasch model was used to generate individualized feedback reports on each rater's relative severity and consistency with respect to particular categories of the rating scale. This study was analyzed using the FACETS ver 3.71.4 program. Overfit and misfit raters showed many difficulties for noticing the difference between assessment factors and interpreting the criteria. Writing raters appear to have much confusion when interpreting the assessment criteria, and especially, overfit and misfit teachers interpret the criteria arbitrarily. The main reason of overfit and misfit is the confusion about assessment factors and criteria in finding basis for scoring. Therefore, there needs to be more training and research is needed for raters based on this type of writing assessment characteristics. This study is recognized significantly in that it collectively examined writing assessment characteristics of writing raters, and visually confirmed the assessment error aspects of writing assessment.
Objectives: The purpose of this systematic review was to investigate the clinical effects of neurofeedback training on reducing anxiety. Methods: Eight databases were used to extract clinical reports on neurofeedback intervention for anxiety reduction published until 2016. We analyzed the characteristics of selected studies and evaluated biases using the Risk of Bias (RoB) assessment. Results: A total of 22 clinical trials were extracted for the analysis. The risk of bias in most studies was high or unclear. The Chinese Classification of Mental Disorders-3 (CCMD-3) was the most frequently used diagnostic criteria, the Hamilton Rating Scale for Anxiety (HAMA) was the most frequently used assessment tool, and the alpha wave activity increase, sensorimotor rhythm (SMR), and theta wave training were the most frequently used intervention methods. All papers showed a statistically significant decrease of anxiety symptoms; however, significant adverse events were not reported. Conclusions: Neurofeedback intervention might be beneficial for reducing anxiety. However, the quality of the studies used in the analysis was low, and the heterogeneity of the population and interventions was revealed. Therefore, more scientifically designed clinical studies regarding neurofeedback training are required.
Background: In this study, various types of deep-learning models for predicting in vitro radiosensitivity from gene-expression profiling were compared. Methods: The clonogenic surviving fractions at 2 Gy from previous publications and microarray gene-expression data from the National Cancer Institute-60 cell lines were used to measure the radiosensitivity. Seven different prediction models including three distinct multi-layered perceptrons (MLP), four different convolutional neural networks (CNN) were compared. Folded cross-validation was applied to train and evaluate model performance. The criteria for correct prediction were absolute error < 0.02 or relative error < 10%. The models were compared in terms of prediction accuracy, training time per epoch, training fluctuations, and required calculation resources. Results: The strength of MLP-based models was their fast initial convergence and short training time per epoch. They represented significantly different prediction accuracy depending on the model configuration. The CNN-based models showed relatively high prediction accuracy, low training fluctuations, and a relatively small increase in the memory requirement as the model deepens. Conclusion: Our findings suggest that a CNN-based model with moderate depth would be appropriate when the prediction accuracy is important, and a shallow MLP-based model can be recommended when either the training resources or time are limited.
Objective: This study aimed to explore the effects of a novel training program that integrates ultrasound technology to enhance the palpation skills of physical therapy students. The program was designed to support students in developing more precise palpation techniques by using ultrasound as a supplementary tool for anatomical identification. Design: A randomized controlled trial. Methods: A total of twenty students, all enrolled in the physical therapy department at S University, who met the specified selection criteria, were randomly assigned to one of two groups: the experimental group (EG, n=10) or the control group (CG, n=10). The experimental group participated in an ultrasound-assisted palpation training program, while the control group did not receive this intervention. Results:The experimental group demonstrated significant improvements in their ability to accurately palpate anatomical landmarks, specifically the long head of the biceps brachii (LHBT) and the lateral joint line of the knee (LJLK), as well as an increased level of confidence in their palpation skills (p<0.05). A comparative analysis of changes from pre- to post-training revealed statistically significant differences between the two groups (p<0.05). Conclusions: The findings of this study suggest that the ultrasound-assisted training program can provide valuable educational benefits, offering foundational data to enhance the development of palpation skills in physical therapy students and making a meaningful contribution to educational research within the field.
Journal of Korean Home Economics Education Association
/
v.21
no.4
/
pp.105-125
/
2009
This study attempts to extract the necessary criteria as a secondary school home economics teacher through the factor analysis, and to analysis the teacher's and student's perceptions for the requirement criteria of home economics teacher(RCHET) thereof to confirm the necessary criteria as a secondary school home economics teachers. This research was based on the requirement criteria of home economics teacher developed by Korea Institute for Curriculum and Evaluation(KICE) Korean Home Economics Education Association(2008)(KHEEA) collected from secondary, upper secondary school home economics teachers and students in Jeollabuk-do. RCHET encompasses the six areas : (l)'Expert of lesson related to evaluation' (2)'Efficient manager of diverse materials for study', (3)'Student advisor equipped with a teaching sense of duty and sound humanity', (4)'Curriculum expert equipped with a expertise knowledge', (5)'A fair and democratic schoolroom environment promoter'. (6)'Career path counselling expert understanding student's characteristics and environments'. Through the factor analysis, six RCHET factors are more important to teachers than students. According to importance perception for RCHET, home economics teachers' qualification for minor second subject and participation of training program showed similar differences statistically in all RCHET factors. Thus, effort for expertise improvement of teacher had important influence on expertise improvement of teacher. As a result of examining the differences from importance evaluation for RCHET, similar differences from frequence of home project, preference of home economics teacher, manual training and home economics score, interest of home economics showed statistically.
This review article discusses the integration of artificial intelligence (AI) in assisted reproductive technology and provides key concepts to consider when introducing AI systems into reproductive medicine practices. The article highlights the various applications of AI in reproductive medicine and discusses whether to use commercial or in-house AI systems. This review also provides criteria for implementing new AI systems in the laboratory and discusses the factors that should be considered when introducing AI in the laboratory, including the user interface, scalability, training, support, follow-up, cost, ethics, and data quality. The article emphasises the importance of ethical considerations, data quality, and continuous algorithm updates to ensure the accuracy and safety of AI systems.
Journal of the Korean Data and Information Science Society
/
v.12
no.2
/
pp.113-124
/
2001
CHAID, logistic regression, bagging trees, and bagging trees are compared on SAS artificial data set as HMEQ in terms of classification accuracy and training time. In error rates, bagging trees is at the top, although its run time is slower than those of others. The run time of logistic regression is best among given models, but there is no uniformly efficient model satisfied in both criteria.
International Journal of Advanced Culture Technology
/
v.12
no.3
/
pp.206-212
/
2024
This study presents five selection rules for training algorithms to extract audio sources from noise. The five rules are Dynamics, Roots, Tonal Balance, Tonal-Noisy Balance, and Stereo Width, and the suitability of each rule for sound extraction was determined by spectrogram analysis using various types of sample sources, such as environmental sounds, musical instruments, human voice, as well as white, brown, and pink noise with sine waves. The training area of the algorithm includes both melody and beat, and with these rules, the algorithm is able to analyze which specific audio sources are contained in the given noise and extract them. The results of this study are expected to improve the accuracy of the algorithm in audio source extraction and enable automated sound clip selection, which will provide a new methodology for sound processing and audio source generation using noise.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.