• Title/Summary/Keyword: Training Algorithm

Search Result 1,881, Processing Time 0.027 seconds

Hybridized dragonfly, whale and ant lion algorithms in enlarged pile's behavior

  • Ye, Xinyu;Lyu, Zongjie;Foong, Loke Kok
    • Smart Structures and Systems
    • /
    • v.25 no.6
    • /
    • pp.765-778
    • /
    • 2020
  • The present study intends to find a proper solution for the estimation of the physical behaviors of enlarged piles through a combination of small-scale laboratory tests and a hybrid computational predictive intelligence process. In the first step, experimental program is completed considering various critical influential factors. The results of the best multilayer perceptron (MLP)-based predictive network was implemented through three mathematical-based solutions of dragonfly algorithm (DA), whale optimization algorithm (WOA), and ant lion optimization (ALO). Three proposed models, after convergence analysis, suggested excellent performance. These analyses varied based on neurons number (e.g., in the basis MLP hidden layer) and of course, the level of its complexity. The training R2 results of the best hybrid structure of DA-MLP, WOA-MLP, and ALO-MLP were 0.996, 0.996, and 0.998 where the testing R2 was 0.995, 0.985, and 0.998, respectively. Similarly, the training RMSE of 0.046, 0.051, and 0.034 were obtained for the training and testing datasets of DA-MLP, WOA-MLP, and ALO-MLP techniques, while the testing RMSE of 0.088, 0.053, and 0.053, respectively. This obtained result demonstrates the excellent prediction from the optimized structure of the proposed models if only population sensitivity analysis performs. Indeed, the ALO-MLP was slightly better than WOA-MLP and DA-MLP methods.

An Algorithm of Optimal Training Sequence for Effective 1-D Cluster-Based Sequence Equalizer (효율적인 1차원 클러스터 기반의 시퀀스 등화기를 위한 최적의 훈련 시퀀스 구성 알고리즘)

  • Kang Jee-Hye;Kim Sung-Soo
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.15 no.10 s.89
    • /
    • pp.996-1004
    • /
    • 2004
  • 1-Dimensional Cluster-Based Sequence Equalizer(1-D CBSE) lessens computational load, compared with the classic maximum likelihood sequence estimation(MLSE) equalizers, and has the superiority in the nonlinear channels. In this paper, we proposed an algorithm of searching for optimal training sequence that estimates the cluster centers instead of time-varying multipath fading channel estimation. The proposed equalizer not only resolved the problems in 1-D CBSE but also improved the bandwidth efficiency using the shorten length of taming sequence to improve bandwidth efficiency. In experiments, the superiority of the new method is demonstrated by comparing conventional 1-D CBSE and related analysis.

A Novel Second Order Radial Basis Function Neural Network Technique for Enhanced Load Forecasting of Photovoltaic Power Systems

  • Farhat, Arwa Ben;Chandel, Shyam.Singh;Woo, Wai Lok;Adnene, Cherif
    • International Journal of Computer Science & Network Security
    • /
    • v.21 no.2
    • /
    • pp.77-87
    • /
    • 2021
  • In this study, a novel improved second order Radial Basis Function Neural Network based method with excellent scheduling capabilities is used for the dynamic prediction of short and long-term energy required applications. The effectiveness and the reliability of the algorithm are evaluated using training operations with New England-ISO database. The dynamic prediction algorithm is implemented in Matlab and the computation of mean absolute error and mean absolute percent error, and training time for the forecasted load, are determined. The results show the impact of temperature and other input parameters on the accuracy of solar Photovoltaic load forecasting. The mean absolute percent error is found to be between 1% to 3% and the training time is evaluated from 3s to 10s. The results are also compared with the previous studies, which show that this new method predicts short and long-term load better than sigmoidal neural network and bagged regression trees. The forecasted energy is found to be the nearest to the correct values as given by England ISO database, which shows that the method can be used reliably for short and long-term load forecasting of any electrical system.

User Similarity-based Path Prediction Method (사용자 유사도 기반 경로 예측 기법)

  • Nam, Sumin;Lee, Sukhoon
    • The Journal of Korean Institute of Information Technology
    • /
    • v.17 no.12
    • /
    • pp.29-38
    • /
    • 2019
  • A path prediction method using lifelog requires a large amount of training data for accurate path prediction, and the path prediction performance is degraded when the training data is insufficient. The lack of training data can be solved using data of other users having similar user movement patterns. Therefore, this paper proposes a path prediction algorithm based on user similarity. The proposed algorithm learns the path in a triple grid pattern and measures the similarity between users using the cosine similarity technique. Then, it predicts the path with applying measured similarity to the learned model. For the evaluation, we measure and compare the path prediction accuracy of proposed method with the existing algorithms. As a result, the proposed method has 66.6% accuracy, and it is evaluated that its accuracy is 1.8% higher than other methods.

Approach to diagnosing multiple abnormal events with single-event training data

  • Ji Hyeon Shin;Seung Gyu Cho;Seo Ryong Koo;Seung Jun Lee
    • Nuclear Engineering and Technology
    • /
    • v.56 no.2
    • /
    • pp.558-567
    • /
    • 2024
  • Diagnostic support systems are being researched to assist operators in identifying and responding to abnormal events in a nuclear power plant. Most studies to date have considered single abnormal events only, for which it is relatively straightforward to obtain data to train the deep learning model of the diagnostic support system. However, cases in which multiple abnormal events occur must also be considered, for which obtaining training data becomes difficult due to the large number of combinations of possible abnormal events. This study proposes an approach to maintain diagnostic performance for multiple abnormal events by training a deep learning model with data on single abnormal events only. The proposed approach is applied to an existing algorithm that can perform feature selection and multi-label classification. We choose an extremely randomized trees classifier to select dedicated monitoring parameters for target abnormal events. In diagnosing each event occurrence independently, two-channel convolutional neural networks are employed as sub-models. The algorithm was tested in a case study with various scenarios, including single and multiple abnormal events. Results demonstrated that the proposed approach maintained diagnostic performance for 15 single abnormal events and significantly improved performance for 105 multiple abnormal events compared to the base model.

A Co-training Method based on Classification Using Unlabeled Data (비분류표시 데이타를 이용하는 분류 기반 Co-training 방법)

  • 윤혜성;이상호;박승수;용환승;김주한
    • Journal of KIISE:Software and Applications
    • /
    • v.31 no.8
    • /
    • pp.991-998
    • /
    • 2004
  • In many practical teaming problems including bioinformatics area, there is a small amount of labeled data along with a large pool of unlabeled data. Labeled examples are fairly expensive to obtain because they require human efforts. In contrast, unlabeled examples can be inexpensively gathered without an expert. A common method with unlabeled data for data classification and analysis is co-training. This method uses a small set of labeled examples to learn a classifier in two views. Then each classifier is applied to all unlabeled examples, and co-training detects the examples on which each classifier makes the most confident predictions. After some iterations, new classifiers are learned in training data and the number of labeled examples is increased. In this paper, we propose a new co-training strategy using unlabeled data. And we evaluate our method with two classifiers and two experimental data: WebKB and BIND XML data. Our experimentation shows that the proposed co-training technique effectively improves the classification accuracy when the number of labeled examples are very small.

Automatic Extraction of Training Dataset Using Expectation Maximization Algorithm - for Automatic Supervised Classification of Road Networks (기대최대화 알고리즘을 활용한 도로노면 training 자료 자동추출에 관한 연구 - 감독분류를 통한 도로 네트워크의 자동추출을 위하여)

  • Han, You-Kyung;Choi, Jae-Wan;Lee, Jae-Bin;Yu, Ki-Yun;Kim, Yong-Il
    • Journal of the Korean Society of Surveying, Geodesy, Photogrammetry and Cartography
    • /
    • v.27 no.2
    • /
    • pp.289-297
    • /
    • 2009
  • In the paper, we propose the methodology to extract training dataset automatically for supervised classification of road networks. For the preprocessing, we co-register the airborne photos, LIDAR data and large-scale digital maps and then, create orthophotos and intensity images. By overlaying the large-scale digital maps onto generated images, we can extract the initial training dataset for the supervised classification of road networks. However, the initial training information is distorted because there are errors propagated from registration process and, also, there are generally various objects in the road networks such as asphalt, road marks, vegetation, cars and so on. As such, to generate the training information only for the road surface, we apply the Expectation Maximization technique and finally, extract the training dataset of the road surface. For the accuracy test, we compare the training dataset with manually extracted ones. Through the statistical tests, we can identify that the developed method is valid.

Automated Assessment System for Train Simulators

  • Schmitz, Marcus;Maag, Christian
    • International Journal of Railway
    • /
    • v.2 no.2
    • /
    • pp.50-59
    • /
    • 2009
  • Numerous train operating companies provide training by means of driving simulators. A detailed analysis in the course of the rail research project 2TRAIN has shown that the simulation technology, the purposes of training and the overall concept of simulator-based training are rather diverse (Schmitz & Maag, 2008). A joint factor however are weak assessment capabilities and the fact that the simulator training is often not embedded into the overall competence management. This fact hinders an optimal use of the simulators. Therefore, 2TRAIN aims at the development of enhanced training and assessment tools. Taking into account that several simulators are already in use, the focus lays on the extension of existing simulation technology instead of developing entirely new systems. This extension comprises (1) a common data simulation interface (CDSI), (2) a rule-based expert system (ExSys), (3) a virtual instructor (VI), and (4) an _assessment database (AssDB). The foundation of this technical development is an assessment concept (PERMA concept) that is based on performance markers. The first part of the paper presents this assessment concept and a process model for the two major steps of driver performance assessment, i.e. (1) the specification of exercise and assessment and (2) the assessment algorithm and execution of the assessment. The second part describes the rationale and the functionalities of the simulator add-on tools. Finally, recommendations for further technical improvement and appropriate usage are given. based on the results of a pilot study.

  • PDF

Robust control of Nonlinear System Using Multilayer Neural Network (다층 신경회로망을 이용한 비선형 시스템의 견실한 제어)

  • Cho, Hyun-Seob
    • The Journal of Korea Institute of Information, Electronics, and Communication Technology
    • /
    • v.6 no.4
    • /
    • pp.243-248
    • /
    • 2013
  • In this thesis, we have designed the indirect adaptive controller using Dynamic Neural Units(DNU) for unknown nonlinear systems. Proposed indirect adaptive controller using Dynamic Neural Unit based upon the topology of a reverberating circuit in a neuronal pool of the central nervous system. In this thesis, we present a genetic DNU-control scheme for unknown nonlinear systems. Our method is different from those using supervised learning algorithms, such as the backpropagation (BP) algorithm, that needs training information in each step. The contributions of this thesis are the new approach to constructing neural network architecture and its training.

Active Control of Structures Using Lattice Probabilistic Neural Network (격자 확률신경망 기법을 이용한 구조물의 능동 제어)

  • Kim, Dong-Hyawn;Chang, Seong-Kyu;Kwon, Soon-Duck;Kim, Doo-Kie
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.17 no.7 s.124
    • /
    • pp.662-667
    • /
    • 2007
  • A new neuro-control scheme for active control of structures is proposed. It utilizes lattice pattern of state vector as training data of probabilistic neural network(PNN). Therefore. it is the so-called lattice probabilistic neural network(LPNN). PNN makes control forces by using all the training patterns. Therefore, it takes much time to obtain a control force in application. This inevitably may delay the control action. However. control force of LPNN is calculated by using only the adjacent information of LPNN input. So, the response of LPNN is greatly faster than PNN. The proposed control algorithm is applied for three story building under California and El Centro earthquakes. Also, control results of the LPNN are compared with those of the conventional PNN. The structural responses have been suppressed effectively by the proposed algorithm.