• 제목/요약/키워드: Training Algorithm

검색결과 1,881건 처리시간 0.027초

속성분할이 없는 향상된 협력학습 방법 (An Improved Co-training Method without Feature Split)

  • 이창환;이소민
    • 한국정보과학회논문지:소프트웨어및응용
    • /
    • 제31권10호
    • /
    • pp.1259-1265
    • /
    • 2004
  • 분류학습에서 높은 정확도를 유지하기 위해서는 충분한 분류 데이타가 필요하게 되는데 분류 데이타는 미 분류 데이타보다 생성하기가 어려운 경우가 많다. 따라서 미 분류 데이타를 활용하여 분류의 정확도를 향상시키는 것은 큰 효용성을 가지며 이러한 미 분류 데이타를 활용하는 대표적인 학습방법 중의 하나는 협력학습(co-training) 알고리즘이다. 이는 데이타를 두 개의 독립적인 속성그룹으로 나누어 두개의 분류자로 학습한 후 미 분류 데이타를 분류하고 그중 가장 신뢰성이 높은 데이타를 분류 데이터에 포함하고 이를 반복하는 학습모델이다. 하지만 이 방법은 전체 데이타의 속성을 독립적인 두개의 집합으로 분할하여야하는 제약이 있다. 따라서 본 연구에서는 이와 같은 문제점을 개선하여 보통의 데이터베이스에 적용시킬 수 있는 새로운 협력학습방법을 제시 하고자한다. 즉. 두 개의 독립적인 속성 그룹으로 나누는 가정을 따르지 않고 전체 속성을 사용할 수 있으며 두 개 이상의 분류자를 사용하는 새로운 협력학습방법을 제안하였다.

Fuzzy Classification Using EM Algorithm

  • Lee Sang-Hoon
    • 대한원격탐사학회:학술대회논문집
    • /
    • 대한원격탐사학회 2005년도 Proceedings of ISRS 2005
    • /
    • pp.675-677
    • /
    • 2005
  • This study proposes a fuzzy classification using EM algorithm. For cluster validation, this approach iteratively estimates the class-parameters in the fuzzy training for the sample classes and continuously computes the log-likelihood ratio of two consecutive class-numbers. The maximum ratio rule is applied to determine the optimal number of classes.

  • PDF

A Practical Radial Basis Function Network and Its Applications

  • Yang, S.Q.;Jia, C.Y.
    • 한국시뮬레이션학회:학술대회논문집
    • /
    • 한국시뮬레이션학회 2001년도 The Seoul International Simulation Conference
    • /
    • pp.297-300
    • /
    • 2001
  • Artificial neural networks have become important tools in many fields. This paper describes a new algorithm fur training an RBF network. This algorithm has two main advantages: higher accuracy and a too stable learning process. In addition, it can be used as a good classifier in pattern recognition.

  • PDF

WLAN 기반 실내 위치 측위에서 측위 정확도 향상을 위한 데이터 구축 방법 (Database Investigation Algorithm for High-Accuracy based Indoor Positioning)

  • 송진우;허수정;박용완;유국열
    • 대한임베디드공학회논문지
    • /
    • 제7권2호
    • /
    • pp.85-93
    • /
    • 2012
  • In this paper, we proposed Wireless LAN (WLAN) localization method that enhances database construction based on weighting factor and analyse the characteristic of the WLAN received signals. The weighting factor plays a key role as it determines the importance of Received Signal Strength Indication (RSSI) value from number of received signals (frequency). The fingerprint method is the most widely used method in WLAN-based positioning methods because it has high location accuracy compare to other indoor positioning methods. The fingerprint method has different location accuracies which depend on training phase and positioning phase. In training phase, intensity of RSSI is measured under the various. Conventional systems adapt average of RSSI samples in a database construction, which is not quite accurate due to variety of RSSI samples. In this paper, we analyse WLAN RSSI characteristic from anechoic chamber test, and analyze the causes of various distributions of RSSI and its influence on location accuracy in indoor environments. In addition, we proposed enhanced weighting factor algorithm for accurate database construction and compare location accuracy of proposed algorithm with conventional algorithm by computer simulations and tests.

Modeling and assessment of VWNN for signal processing of structural systems

  • Lin, Jeng-Wen;Wu, Tzung-Han
    • Structural Engineering and Mechanics
    • /
    • 제45권1호
    • /
    • pp.53-67
    • /
    • 2013
  • This study aimed to develop a model to accurately predict the acceleration of structural systems during an earthquake. The acceleration and applied force of a structure were measured at current time step and the velocity and displacement were estimated through linear integration. These data were used as input to predict the structural acceleration at next time step. The computation tool used was the Volterra/Wiener neural network (VWNN) which contained the mathematical model to predict the acceleration. For alleviating problems of relatively large-dimensional and nonlinear systems, the VWNN model was utilized as the signal processing tool, including the Taylor series components in the input nodes of the neural network. The number of the intermediate layer nodes in the neural network model, containing the training and simulation stage, was evaluated and optimized. Discussions on the influences of the gradient descent with adaptive learning rate algorithm and the Levenberg-Marquardt algorithm, both for determining the network weights, on prediction errors were provided. During the simulation stage, different earthquake excitations were tested with the optimized settings acquired from the training stage to find out which of the algorithms would result in the smallest error, to determine a proper simulation model.

Damage assessment of cable stayed bridge using probabilistic neural network

  • Cho, Hyo-Nam;Choi, Young-Min;Lee, Sung-Chil;Hur, Choon-Kun
    • Structural Engineering and Mechanics
    • /
    • 제17권3_4호
    • /
    • pp.483-492
    • /
    • 2004
  • This paper presents an efficient algorithm for the estimation of damage location and severity in bridge structures using Probabilistic Neural Network (PNN). Generally, the Back Propagation Neural Network (BPNN)-based damage detection methods need a lot of training patterns for neural network learning process and the optimum architecture of a BPNN is selected by trial and error. In this paper, the PNN instead of the conventional BPNN is used as a pattern classifier. The modal properties of damaged structure are somewhat different from those of undamaged one. The basic idea of proposed algorithm is that the PNN classifies a test pattern which consists of the modal characteristics from damaged structure, how close it is to each training pattern which is composed of the modal characteristics from various structural damage cases. In this algorithm, two PNNs are sequentially used. The first PNN estimates the damage location using mode shape and the results of the first PNN are put into the second PNN for the damage severity estimation using natural frequency. The proposed damage assessment algorithm using the PNN is applied to a cable-stayed bridge to verify its applicability.

Random Tabu 탐색법을 이용한 신경회로망의 고속학습알고리즘에 관한 연구 (Fast Learning Algorithms for Neural Network Using Tabu Search Method with Random Moves)

  • 양보석;신광재;최원호
    • 한국지능시스템학회논문지
    • /
    • 제5권3호
    • /
    • pp.83-91
    • /
    • 1995
  • 본 연구에서는 종래에 학습법으로 널리 이용되고 있는 역전파학습법의 문제점으로 지적되어 온 학습에 많은 시간이 걸리는 점과 국소적 최적해에 해가 수렴하여 오차가 충분히 작게 되지 않는 등의 문제점을 해결하기 위해, Hu에 의해 고안된 random tabu 탐색법을 이용하여 신경회로망의 연결강도를 최적화하는 학습알고리즘을 새로이 제안하였다. 그리고 이 방법을 배타적 논리합 문제에 적용하여 기존의 역전파학습법과 학습상수 $, $에 tabu탐색법을 이용한 결과와 비교 검토하여 본 방법이 국소적 최적해에 수렴하지 않고 수렴정도를 개선할 수 있음을 확인하였다.

  • PDF

BLUE-Based Channel Estimation Technique for Amplify and Forward Wireless Relay Networks

  • PremKumar, M.;SenthilKumaran, V.N.;Thiruvengadam, S.J.
    • ETRI Journal
    • /
    • 제34권4호
    • /
    • pp.511-517
    • /
    • 2012
  • The best linear unbiased estimator (BLUE) is most suitable for practical application and can be determined with knowledge of only the first and second moments of the probability density function. Although the BLUE is an existing algorithm, it is still largely unexplored and has not yet been applied to channel estimation in amplify and forward (AF)-based wireless relay networks (WRNs). In this paper, a BLUE-based algorithm is proposed to estimate the overall channel impulse response between the source and destination of AF strategy-based WRNs. Theoretical mean square error (MSE) performance for the BLUE is derived to show the accuracy of the proposed channel estimation algorithm. In addition, the Cram$\acute{e}$r-Rao lower bound (CRLB) is derived to validate the MSE performance. The proposed BLUE channel estimation algorithm approaches the CRLB as the length of the training sequence and number of relays increases. Further, the BLUE performs better than the linear minimum MSE estimator due to the minimum variance characteristic exhibited by the BLUE, which happens to be a function of signal-to-noise ratio.

언센티드 칼만필터 훈련 알고리즘에 의한 순환신경망의 파라미터 추정 및 비선형 채널 등화에의 응용 (Parameter Estimation of Recurrent Neural Networks Using A Unscented Kalman Filter Training Algorithm and Its Applications to Nonlinear Channel Equalization)

  • 권오신
    • 한국지능시스템학회논문지
    • /
    • 제15권5호
    • /
    • pp.552-559
    • /
    • 2005
  • 실시간 순환형 훈련 알고리즘(RTRL)과 같이 경사법에 의해 훈련되는 순환형 뉴럴 네트웍(RNN)은 수렴속도가 매우 느린 단점을 지니고 있다. 이 알고리즘은 또한 오차 역전달 처리과정에서 결코 쉽지 않은 미분 계산을 필요로 한다. 본 논문에서는 완전하게 결합된 RNN의 훈련을 위하여 소위 언센티드 칼만필터라고 불리우는 미분없는 칼만필터 훈련 알고리즘을 시스템의 상태공간 상에서 표현하였다. 미분없는 칼만필터 훈련 알고리즘은 순환형 뉴럴 네트웍 훈련시 미분 계산 없이 매우 빠른 수렴속도와 좋은 추정 성능을 보여준다. 비선형 채널 등화 실험을 통하여 미분 없는 칼만필터 훈련 알고리즘을 이용한 RNN의 성능이 향상되었음을 보였다.

적은 STAP 데이터의 공간주파수-도플러 평면 변환을 이용한 공분산행렬 추정 (Covariance Matrix Estimation with Small STAP Data through Conversion into Spatial Frequency-Doppler Plane)

  • 양훈기
    • 전기전자학회논문지
    • /
    • 제27권1호
    • /
    • pp.38-44
    • /
    • 2023
  • STAP(space-time adaptive processing) 알고리즘의 성능은 CUT(cell under test) 내의 간섭에 대한 공분산 행렬 추정의 정확도가 결정적 역할을 한다. STAP 데이터는 일반적으로 많은 배열 소자 및 사용된 다수의 송신 펄스에 의해 결정되는 2차원 데이터 구조를 가지고 있다. 그러므로 공분산 행렬 추정의 정확도를 높이기 위해서는 매우 많은 트레이닝 데이터가 요구된다. 본 논문에서는 수신된 적은 개수의 데이터를 공간주파수-도플러 평면으로 변환한 후 가상의 트레이닝 데이터를 생성하는 알고리즘을 제시한다. 클러터 점유 위치를 이론적으로 유도하며 이에 근거해서 가상 트레이닝 데이터 생성 절차를 제시하고 STAP 시뮬레이션을 통해서 제시된 알고리즘이 STAP 성능을 개선할 수 있음을 보인다.