• Title/Summary/Keyword: Train vibration

Search Result 782, Processing Time 0.029 seconds

A Case Study on the Design of Railway Tunnel through section for under OO temple (OO 사찰 하부 터널통과 설계 사례)

  • Kim, Shin;Lee, Sung-Ki;Seo, Hyoung-Chul;Kwag, Jung-Yeol;Cho, Bong-Sik
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2006.03a
    • /
    • pp.208-218
    • /
    • 2006
  • It is very important to evaluate predictable problems diversely such as stability of a tunnel and structures when tunnel is inevitably constructed in the area where is adjacent to a structure and low overburden. Double electrified railway design on the third section of Donghae-Nambu line studied in this paper has some problems mentioned above. So more careful works are required before construction. In this study, ground surrounding is composed of faults, fault zone and set back about 13m from a Buddhist temple located on the upper part of the tunnel. From these conditions, this case study presents proper methods considering ground condition, effects of blasting and civil petitions. It is tried to make the tunnel and Buddhist temple stable by analytical technique and analysis of existing cases. And design considering stability of tunnel and adjacent structure during operation is carried out as well. Especially, environmentally friendly railway tunnel which is appropriate to the local condition and surroundings is designed by minimizing noise and vibration that is able to occur during construction and train service. From now on, this study is helpful to better design in the case of tunnel design which has to consider civil petition.

  • PDF

A Study on Determination of the Minimum Vertical Spring Stiffness of Track Pads in Korea High Speed Railway. (고속철도 궤도패드의 최소 수직 스프링계수 결정에 관한 연구)

  • Kim Jeong-il;Yang Sin-Chu;Kim Yun-Tae;Suh Sa-Bum
    • Proceedings of the KSR Conference
    • /
    • 2005.05a
    • /
    • pp.504-509
    • /
    • 2005
  • Railway noise and vibration has been recognized as major problems with the speed-up of rolling stock. As a kind of solution to these problems, the decrease of stiffness of track pad have been tried. However, in this case, overturning of rail due to lateral force should be considered because it can have effect on the safety of running train. Therefore, above two things - decrease of stiffness of track pad and overturning of rail due to lateral force - should be considered simultaneously for the appropriate determination of spring coefficient of track pad. With this viewpoint, minimum spring coefficient of track pad is estimated through the comparison between the theoretical relationship about the overturning of rail and 3-dimensional FE analysis result. Two kinds of Lateral force and wheel load are used as input loads. Extracted values from the conventional estimation formula and the Shinkansen design loads are used. It is found that the overturning of rail changes corresponding to the change of the stiffness of track pad and the ratio of lateral force to wheel load. Moreover, it is found that the analysis model can have influence on the results. Through these procedure, minimum spring coefficient of track pad is estimated.

  • PDF

A Study on Sample manufacturing and Performance Evaluation for Vibration Insulation Material of Noise Barrier for High-Speed Railway (고속철도구간 방음벽 제진재 시험제작 및 성능평가에 관한 연구)

  • Kim Soon-Cheol;Kang Jeong-Ok;Han Kwang-Seob;Jeon Byung-Chan;Han Jong-Moon
    • Proceedings of the KSR Conference
    • /
    • 2005.05a
    • /
    • pp.522-529
    • /
    • 2005
  • The commercial service of KTX from April 1st 2004 has realized that whole country has shrunk into half-day life zone and it opened the times of speed. However, some technical problems unexpected before service have been raised and, among them, the noise generation at train passing was claimed by the residents living nearby the track and it is often publicized by the broadcastings and newspapers. In case where the residential area is close to the track, the installation of noise barrier at trackside is the general measures for noise reduction on bridge section and earthwork section. In case of KTX project, such measures were actually taken without any exception; however, the noise level is still high. In this study, analysis for the reason of higher noise level in spite of which the noise barriers are being installed was carried out, the sample of insulation material effective for noise barrier was manufactured and the performance of the insulation material was evaluated to verify its effectiveness

  • PDF

Experimental Studies on Aerodynamic Characteristics of Pantograph system for HEMU-400X (차세대 고속열차(HEMU-400X)의 팬터그래프 시스템에 대한 공력특성 연구)

  • Lee, Yeong-Bin;Rho, Joo-Hyun;Kwak, Min-Ho;Lee, Jae-Ho;Kim, Kyu-Hong;Lee, Dong-Ho
    • Proceedings of the KSR Conference
    • /
    • 2010.06a
    • /
    • pp.133-138
    • /
    • 2010
  • This paper describes on aerodynamic characteristics of pantograph system for Next generation high speed train(HEMU-400). The pantograph which supports electric power is located on the roof. Because of this, it generate high drag, severe acoustic noise and vibration which induced unstable flow due to complex configuration. Therefore, the design of high efficient pantograph needs to increase operational speed. In this research, wind tunnel tests were performed to design a high efficient pantograph system using 1/4 scaled model which were KTX-II pantograph, single arm pantograph and periscope type pantograph with square cylinder shape panhead and optimized shape panhead. For real operational condition, flow directions were adapted by rotation of pantograph. From this results of wind tunnel, it is checked that the pantograph with optimized panhead and single arm type or periscope type has better aerodynamic performance. In addition, lift control device and spoiler in pantograph were tested to investigate the validity of application.

  • PDF

Dynamic Analysis of Structure's Approaches through Field Tests in the Conventional Railway (현장계측을 통한 기존선 철도 구조물 접속부의 거동분석)

  • Park, Joon-Oh;Lee, Sang-Bae;Hong, Won-Pyo
    • Proceedings of the KSR Conference
    • /
    • 2007.05a
    • /
    • pp.1864-1874
    • /
    • 2007
  • Korean trains pass many mountain areas, so the volume of structures like bridge and tunnel has large part of railway lines. Train speed-up naturally needs a straight line in railway, then structures are increasing, and the length of structure has more than 70% in Kyongbu high-speed railway. The stiffness of bridge and tunnel is higher than the soil in the roadbed in spite of dynamic difference in vibration and displacement. Differences in stiffness have more dynamic effects and increase the deformation and destruction in the track and roadbed. This influences passenger's comfort and the safety of operation, and it needs more track maintenance. This study selected tunnel with ballast track, tunnel with concrete track, and structure's approaches with short maintenance cycle in the roadbed and had track acceleration tests and track liner inspections using track master in the field. This study will measure periodically to structure's approaches which have very fast track irregularity and analyze dynamic differences and track irregularity near structure's approaches, so realize the cause of track irregularity of structure's approaches and use basic data for reasonably strengthening method of structure's approaches.

  • PDF

A study on availability of GPR in estimating the condition of ballast (자갈도상 상태평가를 위한 GPR기법의 적용성 분석)

  • Lee, Choon-Kil;Kim, Nam-Hong;Woo, Byoung-Koo;Kim, Kwan-Hyung
    • Proceedings of the KSR Conference
    • /
    • 2007.11a
    • /
    • pp.494-499
    • /
    • 2007
  • The ballast, one of a track components, plays an essential role as intermedium in transmitting train traffic-load to subgrade safely, and deterioration of ballast caused by cumulative load effects growth of track irregularity. Especially in the case of Gyeongbu high-speed railway, the deteriorating speed of ballast by dynamic vibration is faster than conventional line because KTX is longer than normal trains in length and it's velocity is very fast with high speed of 300km/h as well. In addition, ballast is a nonlinear material contrary to ordinary metal which has homogeneous property and this property of ballast may cause transformation of ballast. Therefore the theoretical modeling of ballast is quite complicated and it is hard to ensure the reliability of the result. The objective of this paper is to examine the availability of GPR(Ground Penetrating Radar) in estimating the thickness and the degree of deterioration of ballast. First, We figured out the principle of GPR which is the technique of evaluating the condition of ballast and then analyzed data which were measured at Gyeongbu high-speed railway where KTX is running now.

  • PDF

Development of double injection mold for fuel-tube holder (자동차 연료튜브 홀더용 이중사출 금형·성형기술)

  • Kim, Gun-Hee;Yoon, Gil-Sang;Heo, Young-Moo;Jung, Woo-Chul;Shin, Kwang-Ho
    • Design & Manufacturing
    • /
    • v.1 no.1
    • /
    • pp.1-5
    • /
    • 2007
  • Double injection molding process is very efficient molding-method for molding the products which is consist of multi-materials. Fuel-tube holder which is necessary for automobil power train and circulation systems is composed of plastic and rubber materials to minimize the vibration and pulsation noises. In existing process, fuel-tube holder was made by the insert molding process or assembly process after molding. If fuel-tube holder is manufactured by double injection molding process, it may be realize to improve the product quality, efficiency of molding-process and retrenchment of manufacturing cost. In this study, for manufacturing fuel-tube holder by double injection molding process, the analysis of joining characteristics between PA6(polyamide 6) and TPE(thermoplastic elastomer) was executed and the double injectin mold for molding fuel-tube holder with core toggle mechanism was fabricated. Finally, fuel-tube holder was molding using fabricated double injection mold.

  • PDF

Study on a Full-Size Tester for Manual Transmision Clutches (수동변속기용 클러치의 관성시험장치에 관한 연구)

  • 이병수;신현명;허만대
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.12 no.4
    • /
    • pp.101-109
    • /
    • 2004
  • Three models with various degree-of-freedom for a manual transmission clutch full-size tester have been developed and the models' reliability and accuracy have been verified using the measured data. A simulation study has also been conducted to understand dynamic behavior of the tester. The model for this simulation study includes clutch disk friction and damper dynamics. The developed model is very accurate in terms of maximum torque exerted on the clutch, slip duration and the vibration response except a slight difference compared to the measured data. In a history graph of the clutch torque, the maximum torque response from simulation is flat but the measured is sunken with a noticeable curvature. This phenomenon is found to be irrelevant to the dynamics of the full-size tester but is originated from the characteristics of the clutch itself. Thus, the full-size tester has been proven to be a reliable tester for clutch's power and torque transmission capability. To obtain a better understanding of clutch's characteristics and relationship between full-size tester and other testing methodologies, future research directions have been suggested.

A Study on On-Site Railroad Track Structure Performance Improvement Methods for Low-Maintenance (현장궤도 생력화를 위한 도상구조 개선에 관한 연구)

  • 양재성;이희현;남보현
    • Proceedings of the KSR Conference
    • /
    • 2000.05a
    • /
    • pp.479-486
    • /
    • 2000
  • There has been recently an on-going effort in railway community to improve the dynamic performance of on-site railroad track with limited track possession time. In this paper, train running test lateral resistant force test and static/dynamic analyses are conducted before and after sprinkle of the ballast stabilizer in order to investigate the dynamic behaviors and parameters of the railroad track. Based upon the above results, effects of the stabilizer is verified, and a table for the track modulus representing on-site track condition and the methods to reduce the vibration and the transmitting forces of the ballasted track components to the infrastructures are suggested. It is thought that the suggestions made in this paper could be used as the preliminary data for the condition assessment and the maintenance of the track in the future.

  • PDF

Analysis of Spiral Lattice Girder Shape in preparation for HSR Speed Increase

  • Eum, Ki-Young;Lee, Jee-Ha;Park, Young-Kon;Yun, Jangho;Jeong, Seongwoon
    • International Journal of Railway
    • /
    • v.6 no.4
    • /
    • pp.160-168
    • /
    • 2013
  • A spiral lattice girder-reinforced Bi-block sleeper which has enhanced durability against increasingly growing impact force and vibration by wheel load and improved structural performance while train runs at 350km/h high speed is hereby proposed. The section of a spiral lattice girder has stable and superior structural performance thanks to its confinement effect. To compare and analyze the structural performance of spiral lattice girder-reinforced bi-block sleeper, strain and stress distribution were evaluated after applying same load condition as existing triangular lattice girder-reinforced biblock sleeper, and to compare the structural performance of triangular lattice girder and spiral lattice girder, structural analysis of lattice girder was performed separately. As a result, a spiral lattice girder proved to have had superior structural characteristics to bi-block sleeper, and furthermore as a result of evaluating the fastener interface and constructibility with shape-improved lattice girder, no interference with existing railroad structure was found and in terms of cost efficiency, a spiral lattice girder appeared to be superior to existing lattice girder.