• Title/Summary/Keyword: Train velocity

Search Result 329, Processing Time 0.024 seconds

An Accurate Velocity Estimation using Low Resolution Tachometer of High-Speed Trains (고속열차의 저해상도 타코미터를 이용한 정확한 속도 추정에 관한 연구)

  • Lee, Jae-Ho;Kim, Seong Jin;Park, Sungsoo
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.67 no.1
    • /
    • pp.131-136
    • /
    • 2018
  • Reliable velocity estimation technology for trains is one of technologies used to operate trains safely and effectively. Various sensors such as tachometers, doppler radars, and global positioning systems are used to estimate velocity of a train. Tachometer is widely used to estimate velocity of a trains due to its simplicity, small volume, cost-effectiveness, continuously measurement at high speed, and robustness against noise. Accuracy in the velocity calculation using a tachometer depends on quantization error, measurement error of wheel radius or diameter, and tachometer's imperfection from manufacturing or installation process. In this paper, we present an accurate velocity estimation method using a low-resolution tachometer, which is commonly installed on a high-speed train. Baseline estimation method is proposed to accurately calculate the velocity of the high-speed train from tachometer's pulses. HEMU-430x test train is used for the experiment and verification of the proposed method. Experimental results with several routes show that the proposed method is more accurate than a conventional method.

Vibration Velocity Response of Buried Gas Pipelines according to Train Speed (지중 매설 가스 배관의 열차 주행 속도에 따른 진동 속도 특성)

  • Kim, Mi-Seung;Sun, Jin-Sun;Kim, Gun;Kim, Moon-Kyum
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 2008.04a
    • /
    • pp.561-566
    • /
    • 2008
  • Recently, because of development of the high speed train technology, the vibration loads by train is significantly increased ever than before. This buried gas pipelines are exposed to both repeated impact loads, and, moreover, they have been influencing by vibration loads than pipeline which is not located under vehicle loads. The vibration characteristic of pipeline is examined by dynamic analysis, and variable is only train speed. Since an effect of magnitude of vibration loads is more critical than cover depth, as increasing the train speed, the vibration speed of buried pipelines is also increased. The slope of vibration velocity is changed by attenuation of wave, at train speed, 300 km/h. From the analysis results, the vibration velocity of pipelines is satisfied with the vibration velocity criteria which are established by Korea Gas Corporation. The results present operation condition of pipelines under rail loads has fully sound integrity based on KOGAS specification.

  • PDF

A Numerical Study on the Compression Wave Generated by the Train Entering a Tunnel - Effects of the Start Method of a Train - (열차가 터널에 진입할 때 발생하는 압축파에 대한 수치해석 -열차의 출발방법에 따른 영향에 대한 고찰 -)

  • Kim, Sa-Ryang
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.18 no.12
    • /
    • pp.1039-1046
    • /
    • 2006
  • The numerical simulations on the train entering a tunnel are performed by solving unsteady axi-symmetric problems. To reduce the effects of the pressure wave generated by the train starting abruptly, several starting methods of the train are examined. The high order velocity increase gives better results than those for the linear velocity increase. The high order velocity increase gives good results for the pressure rise by the train entering a tunnel, too. The distance to the train reaches the highest running velocity from the start should be more than 60 m when the train speed is 350 km/h.

Numerical analysis of wind field induced by moving train on HSR bridge subjected to crosswind

  • Wang, Yujing;Xia, He;Guo, Weiwei;Zhang, Nan;Wang, Shaoqin
    • Wind and Structures
    • /
    • v.27 no.1
    • /
    • pp.29-40
    • /
    • 2018
  • To investigate the characteristics of the combined wind field produced by the natural wind field and the train-induced wind field on the bridge, the aerodynamic models of train and bridge are established and the overset mesh technology is applied to simulate the movement of high-speed train. Based on ten study cases with various crosswind velocities of 0~20 m/s and train speeds of 200~350 km/h, the distributions of combined wind velocities at monitoring points around the train and the pressure on the car-body surface are analyzed. Meanwhile, the difference between the train-induced wind fields calculated by static train model and moving train model is compared. The results show that under non-crosswind condition, the train-induced wind velocity increases with the train speed while decreases with the distance to the train. Under the crosswind, the combined wind velocity is mainly controlled by the crosswind, and slightly increases with the train speed. In the combined wind field, the peak pressure zone on the headstock surface moves from the nose area to the windward side with the increase of wind velocity. The moving train model ismore applicable in analyzing the train induced wind field.

A Numerical Study on the Compression Wave Generated by the Train Entering a Tunnel (열차가 터널에 진입할 때 발생하는 압축파에 대한 수치해석)

  • Kim, Sa-Ryang
    • The KSFM Journal of Fluid Machinery
    • /
    • v.9 no.6 s.39
    • /
    • pp.17-21
    • /
    • 2006
  • The numerical simulations on the train entering a tunnel were performed by solving unsteady axi-symmetric problems. In the case that 5th order velocity profile is used to reduce the effects of the pressure wave generated by the train starting abruptly, the effect of the initial distance between the train and the tunnel were examined. The impulsive start gives undesired pressure disturbances to the flow field including inside the tunnel. But 5th order velocity profile with initial distance more than 80 m gives much stable pressure variance in time, and pressure distribution inside the tunnel in space. The distance to the train reaches the highest running velocity from the start should be more than 80 m when the train speed is 350 km/h.

A Study on Railroad Safety System of Train Alarm Device Using GPS and RF type (GPS와 RF 방식의 열차접근경보장치에 의한 철도 안전 시스템 구축에 대한 연구)

  • Shim Jae-bock;Ohn Jung-guen;Ki Jin Kwon;Lee Kang-won
    • Proceedings of the KSR Conference
    • /
    • 2004.06a
    • /
    • pp.1362-1364
    • /
    • 2004
  • Recently, GPS device is used in various industries. GPS can calculate a moving train's velocity, location, and direction. In this paper, we examine a train approaching alarm device's application, possibility, and merits in the train system. Especially, we investigate solubility of trouble caused by using GPS and RF system for detecting the train's velocity, the location and direction recognition.

  • PDF

Dynamic Change of Stresses in Subsoil under Concrete Slab Track Subjected to Increasing Train Speeds (열차 증속에 따른 콘크리트 궤도 노반의 동적 응력 변화)

  • Lee, Tae-Hee;Choi, Chan-Yong;Nsabimana, Ernest;Jung, Young-Hoon
    • Journal of the Korean Geotechnical Society
    • /
    • v.29 no.10
    • /
    • pp.57-66
    • /
    • 2013
  • Societal interest on a faster transportation demands an increase of the train speed exceeding current operation speed of 350 km/h. To trace the pattern of variations in displacements and subsoil stresses in the concrete slab track system, finite element simulations were conducted. For a simple track-vehicle modeling, a mass-point system representing the moving train load was developed. Dynamic responses with various train speeds from 100 to 700 km/h were investigated. As train speeds increase the displacement at rail and subsoil increases nonlinearly, whereas significant dynamic amplification at the critical velocity has not been found. At low train speed, the velocity of elastic wave carrying elastic energy is faster than the train speed. At high train speed exceeding 400 km/h, however, the train speed is approximately identical to the elastic wave velocity. Nonlinearity in the stress history in subsoil is amplified with increasing train speeds, which may cause significant plastic strains in path-dependent subsoil materials.

Principal and Application of Velocity Detection Signal Device Applied in Tarin Control System of Maglev Train (자기부상열차 열차제어시스템에 적용되는 속도검출장치 원리 및 적용사례)

  • Kim, Young-Taek;Cho, Dong-Il;Lee, Oh-Hyun;Park, Hee-Jun
    • Proceedings of the KSR Conference
    • /
    • 2011.10a
    • /
    • pp.1108-1114
    • /
    • 2011
  • In general, railway system uses wheels so detecting speed by tachometer. However, LRT(Light Rail Transits) stands out recently as alternatives transportation, and besides of that Maglev trains are emerged as an alternative means of transportation. Maglev operates above certain heights caused inability of the measurement by tachometer which used to detect speed of wheels. Velocity Detection Signal Device of Train Control System applied in "Train Control System Project of Pilot Line Construction for Urban MAGLEV Train" which is prepared ahead of opening in 2013. This paper, therefore, explains the function and operation principal of Velocity Detection Signal Device, and suggests installation method of velocity detection loop installed around the track.

  • PDF

Development of Load Modeling of Locomotive using Velocity and Consumed Power (속도와 소비전력을 이용한 전기차의 부하모델 개발)

  • Kim Joorak;Jang Donguk
    • Proceedings of the KIEE Conference
    • /
    • summer
    • /
    • pp.1352-1354
    • /
    • 2004
  • The accurate analysis on railway traction power system should be carried out a load forecast preferentially. Commonly, it has been performed through Train Performance Simulator (TPS). In the study focused on velocity or location of train, however, the electric power consumption have been computed by converting mechanical power according to given velocity. Therefore, this paper presents a development of a mathematical model for electric load. The proposed load model is expressed as polynomial to reflect the influence of variance of train speed, that is, the model expresses the power as a function of train speed. in this study, method of the least squares method is used to find each coefficient and field test is performed to acquire data, electric power and speed of train in commercial running line.

  • PDF

A Study on the Real-time Optimization Technique for a Train Velocity Profile (실시간 열차 속도 프로파일 최적화 기법에 관한 연구)

  • Kim, Moosun;Kim, Jungtai;Park, Chul-Hong
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.17 no.8
    • /
    • pp.344-351
    • /
    • 2016
  • In the point of view of a train operator, the main concern with a train operation is not only to maintain a time schedule, but also to decrease the energy consumption as much as possible. Generally for a manual drive, a train conductor controls the train acceleration and deceleration by controlling the notches not to exceed the regulation velocity by considering the given maximum velocity profile for an operation route. For this case, the guideline for a conductor is needed to choose the proper notches by applying the notch optimization so as to drive at the regulation velocity and minimize energy consumption simultaneously. In this paper, the real-time notch optimization plan is suggested using a genetic algorithm that optimizes the notches for the remaining route in real time when the event occurs that track information or regulation velocity profile of the remaining route changes during train operation as well as a normal operation situation. An energy saving effect and the convergence behavior of the optimal solution obtained was analyzed in a genetic algorithm.