• Title/Summary/Keyword: Train traffic control

Search Result 87, Processing Time 0.025 seconds

A study on the station traffic control system design concerning local traffic (로컬트래픽을 고려한 역시스템 설계에 관한 연구)

  • Kim Young-Hoon;Hong Soon-Heum;Park Bum-Hwan;Kim You-ho;Lee Young-Soo;Ahn Jin;Kim Eun-Hee
    • Proceedings of the KSR Conference
    • /
    • 2005.05a
    • /
    • pp.825-830
    • /
    • 2005
  • Traffic control is the center of the railway traffic control system. The main objective of railway traffic control system is to minimize delays, providing the customers with on-time train operating service according to the given train schedule. Particularly, within the station control area, the departure & arrival of train. the decision on the train priority and the shunting of train are decided by the authority of the local traffic controller. Therefore, it is necessary to have a lot of information and communications between each departments. And for such decision making of the local traffic controller, not only the communication between each stations are needed, but also the communication between other stations are needed too. In this paper, we have analyzed the main work of the local traffic controller in large scale stations and have designed the station traffic control system needed to be built within the station considering the local traffic. And we have proposed not only the communication with other system within station, but also the communication methods for communications with the neighboring stations.

  • PDF

A study of the train traffic optimal control system in a circular metro line (도시형 순환 열차에서 운전 최적제어 시스템에 관한 연구)

  • Hong, Hyo-Sik;Ryu, Kwang-Gyun;Song, Noon-Suck
    • Proceedings of the KSR Conference
    • /
    • 2003.10c
    • /
    • pp.236-246
    • /
    • 2003
  • This paper is implemented a control algorithm in order to be stable and minimized to entire train traffic system at delayed case. Signal ing system is described wi th algebraic equations given for train headway, Discrete-event simulation principles are reviewed and a demonstration block signaling model using the technique is implemented. Train congestion at station entrance for short headway operation is demonstrated and the propagation of delays along a platform of trains from any imposed delay to the leading train is also shown. A rail way signaling system is by nature a distributed operation with event triggered at discrete intervals. Although the train kinematic variables of position, velocity, and acceleration are continually changing, the changes are triggered when the trains pass over section boundaries and arrive at signals and route switches. This paper deals with linear-mode1ing, stability and optimal control for the traffic on such metro line of the model is reconstructed in order to adapt the circuits. This paper propose optimal control laws wi th state feedback ensuring the stability of the modeled system for circuits. Simulation results show the benefit to be expected from an efficient traffic control. The main results are summarized as follows: 1. In this paper we develop a linear model describing the traffic for both loop lines, two state space equations have been analyzed. The first one is adapted to the situation where a complete nominal time schedule is available while second one is adapted when only the nominal time interval between trains is known, in both cases we show the unstability of the traffic when the proceeding train is delayed following properties, - They are easily implemented at law cost on existing lines. - They ensure the exponetial stability of loop system. 2. These control laws have been tested on a traffic simulation software taking into the non-linearites and the physical constraints on a metro line. By means of simulation, the efficiency of the proposed optimal control laws are shown.

  • PDF

A study on the autonomous decentralized train operation control system (자율분산형 열차운행제어체계에 관한 연구)

  • Kim Young-Hoon;Hong Soon-Heum;Jung Tae-Un;Ahn Jin;Kim Ryu-ho;Park Sung-Kyu
    • Proceedings of the KSR Conference
    • /
    • 2004.06a
    • /
    • pp.528-533
    • /
    • 2004
  • The purpose of this thesis is to construct the autonomous decentralized train traffic management structure using techniques of Autonomous Decentralized System. Currently, a method of train traffic control is making use of CTC(Centralized Traffic Control). Its operation method is divided into the remote mode and the local mode. The classified basis is according to the control authority of install signals in track side. In most cases, a large scale station is operated by the local mode. Because of dispatchers in center can not control the shunting works influence on the main route. In order to solve these problem s, we analyzed a current operation condition and system requirements. Moreover, this thesis is constructing autonomous decentralized train traffic management structure. Finally, this research proposed that interface with CTC and step-by-step construction.

  • PDF

Optimization of the anti-snow performance of a high-speed train based on passive flow control

  • Gao, Guangjun;Tian, Zhen;Wang, Jiabin;Zhang, Yan;Su, Xinchao;Zhang, Jie
    • Wind and Structures
    • /
    • v.30 no.4
    • /
    • pp.325-338
    • /
    • 2020
  • In this paper, the improvement of the anti-snow performance of a high-speed train (HST) is studied using the unsteady Reynolds-Averaged Navier-Stokes simulations (URANS) coupled with the Discrete Phase Model (DPM). The influences of the proposed flow control scheme on the velocity distribution of the airflow and snow particles, snow concentration level and accumulated mass in the bogie cavities are analyzed. The results show that the front anti-snow structures can effectively deflect downward the airflow and snow particles at the entrance of the cavities and alleviate the strong impact on the bogie bottom, thereby decrease the local accumulated snow. The rotational rear plates with the deflecting angle of 45° are found to present well deflecting effect on the particles' trajectories and force more snow to flow out of the cavities, and thus significantly reduce the accretion distribution on the bogie top. Furthermore, running speeds of HST are shown to have a great effect on the snow-resistance capability of the flow control scheme. The proposed flow control scheme achieves more snow reduction for HST at higher train's running speed in the cold regions.

A comparative study on the traffic management system (열차운행관리시스템 비교 연구)

  • Kim, Young-Hoon;Hong, Soon-Heum
    • Proceedings of the KSR Conference
    • /
    • 2003.10b
    • /
    • pp.311-318
    • /
    • 2003
  • Traffic management means the management of streams of people, vehicle and cargo. Its aim is to help creating an efficient, safe and environmentally friendly transport system. Traffic management can roughly be divided in traffic control and monitoring, traffic information and demand management. The main purpose of this thesis is providing the basis for developing the next generation train traffic management system by comparing domestic and abroad train traffic management system. The composition of this thesis has been discussed in the following order of the comparison of train traffic management system's function, the introduction of Autonomous Decentralized system, the comparison between CTC and ATOS. the comparison between the hierarchy system and Autonomous Decentralized system, the study of introduction plan of Autonomous Decentralized-type train traffic management system and conclusion.

  • PDF

Traffic Regulation Algorithm for Metro Lines with Time Delay (시간지연에 따른 열차의 운행간격 제어알고리즘)

  • Min-Kee, Park
    • Journal of IKEEE
    • /
    • v.26 no.4
    • /
    • pp.590-595
    • /
    • 2022
  • When a train is delayed because of a disturbance, the time interval deviation between successive trains increases, and high frequency metro lines can become unstable. Thus, it is necessary to control the traffic regularity to prevent any such instability. In this paper, we propose a simple but effective traffic regulation algorithm that gurantees system stability. In the proposed method, the control algorithm for running time is designed using a discrete traffic model where control input is determined from a linear combination of departure time deviations and control input of the preceding train to ensure an optimal time interval between successive trains. The results of the computer simulation are also given to demonstrate the validity of the proposed algorithm.

Discrete event simulation of Maglev transport considering traffic waves

  • Cha, Moo Hyun;Mun, Duhwan
    • Journal of Computational Design and Engineering
    • /
    • v.1 no.4
    • /
    • pp.233-242
    • /
    • 2014
  • A magnetically levitated vehicle (Maglev) system is under commercialization as a new transportation system in Korea. The Maglev is operated by an unmanned automatic control system. Therefore, the plan of train operation should be carefully established and validated in advance. In general, when making a train operation plan, statistically predicted traffic data is used. However, a traffic wave often occurs in real train service, and demand-driven simulation technology is required to review a train operation plan and service quality considering traffic waves. We propose a method and model to simulate Maglev operation considering continuous demand changes. For this purpose, we employed a discrete event model that is suitable for modeling the behavior of railway passenger transportation. We modeled the system hierarchically using discrete event system specification (DEVS) formalism. In addition, through implementation and an experiment using the DEVSim++ simulation environment, we tested the feasibility of the proposed model. Our experimental results also verified that our demand-driven simulation technology can be used for a priori review of train operation plans and strategies.

A study on the railway signal system for high density traffic (열차의 고밀도운전을 위한 신호보안 시스템에 관한 연구)

  • 강규현;김희식
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1997.10a
    • /
    • pp.163-166
    • /
    • 1997
  • In order to shorten head-way time on existing railway lines without any change of signal block length between stations, it is a realistic optional way to change the control method of train signal, i.e. to modernize the cab signal using transponder. A new signalling system of operation pattern control technique is suggested as new model to increase the railway traffic efficiency. Through the computer simulation of this model, the train head-way time by the fixed signalling system and the new pattern control system is analyzed.

  • PDF

A Study on Minimization of Train Delays and Train Operation Interruptions by RF Transmission System. (RF 통신시스템을 이용한 열차 운행중단 및 열차 지연의 최소화에 관한 연구)

  • Lee, We-Jae;Kook, Kwaung-Ho
    • Proceedings of the KSR Conference
    • /
    • 2008.06a
    • /
    • pp.1466-1472
    • /
    • 2008
  • To minimize the train operation interruptions and train exchanges, the RF transmission system is proposed. The current control room of the Seoul Metro has information of the train movement through the Total Traffic Control System, but it does not have information of the train itself, rail status, and other facilities' status. When some trouble occurs during train operation, the train crews should report the control room about the trouble and fix it. If the control room has exact information of the trouble, the expert in the control room can help the crews to fix the trouble swiftly and exactly. Since the crews are busy taking care of the trouble, they often miss to report the control room on time. The proposed RF transmission system relays the information of the train to the control room automatically in real time, and makes it possible to provide the passengers good service by reducing the train operation interruptions and train exchanges.

  • PDF

Integrated Railway Signaling Systems for Laboratory Testing of Next-generation High-speed Train (한국형 고속전철용 신호시스템의 실험실 시험을 위한 통합 신호시스템)

  • Hwang, Jong-Gyu;Lee, Jong-Woo;Park, Yong-Jin
    • The Transactions of the Korean Institute of Electrical Engineers P
    • /
    • v.53 no.1
    • /
    • pp.32-39
    • /
    • 2004
  • Railway signaling systems consist of several vital computerized equipment such as CTC(Centralized Traffic Control), EIS(Electronic Interlocking System), ATC(Automatic Train Control) and so on. Currently, the project for development of railway signaling systems for the next-generation high-speed train is progressed according to the G7 project and railway signaling related several companies and research institute are joined this project consortium. The railway signaling systems, being developed in this project, called as a kTCS(Korean Train Control System), is composed of kTCS-CTC, kTCS-IXL, kTCS-ATC and etc. kTCS signaling systems have to be operated at the laboratory testing level as integrated signaling systems by interface between each railway signaling systems before railway field installation and revenue service. To solve this matter, communication protocols between each signaling equipment are designed and message codes for each defined protocols have defined. And also several equipment has developed for the railway integrated signaling systems for laboratory testing. We has plentifully tested and verified the designed protocols and the characteristics of integrated railway signaling systems with our developed each kTCS signaling equipment and communication protocols. In this paper, the integrated kTCS system including communication protocols is presented.