• 제목/요약/키워드: Train detection

검색결과 385건 처리시간 0.028초

보행자 탐지용 차량용 레이더 신호처리 알고리즘 구현 및 검증 (Development of Human Detection Algorithm for Automotive Radar)

  • 현유진;진영석;김봉석;이종훈
    • 한국자동차공학회논문집
    • /
    • 제25권1호
    • /
    • pp.92-102
    • /
    • 2017
  • For an automotive surveillance radar system, fast-chirp train based FMCW (Frequency Modulated Continuous Wave) radar is a very effective method, because clutter and moving targets are easily separated in a 2D range-velocity map. However, pedestrians with low echo signals may be masked by strong clutter in actual field. To address this problem, we proposed in the previous work a clutter cancellation and moving target indication algorithm using the coherent phase method. In the present paper, we initially composed the test set-up using a 24 GHz FMCW transceiver and a real-time data logging board in order to verify this algorithm. Next, we created two indoor test environments consisting of moving human and stationary targets. It was found that pedestrians and strong clutter could be effectively separated when the proposed method is used. We also designed and implemented these algorithms in FPGA (Field Programmable Gate Array) in order to analyze the hardware and time complexities. The results demonstrated that the complexity overhead was nearly zero compared to when the typical method was used.

인공신경망을 이용한 철골모멘트골조 접합부의 회전강성 손상예측 (Estimation of Rotational Stiffness of Connections in Steel Moment Frames by using Artificial Neural Network)

  • 최세운
    • 한국구조물진단유지관리공학회 논문집
    • /
    • 제22권1호
    • /
    • pp.107-114
    • /
    • 2018
  • 본 연구는 인공신경망을 이용해 철골모멘트골조의 접합부 손상을 예측하는 기법을 제안한다. 인공신경망의 입력층에는 기둥 부재의 휨모멘트, 고유진동수, 모드형상 정보가 사용되며, 출력층에는 구조물 접합부의 회전강성 손상지표가 사용한다. 손상지표는 각 접합부의 손상정도를 의미한다. 5층 철골모멘트골조 예제의 수치해석을 통해 훈련 및 검증용 데이터를 생성한다. 총 829가지의 손상 시나리오가 고려된다. 시뮬레이션은 OpenSees를 이용해 반복 실행하여 데이터를 얻도록 하였으며, 훈련용 데이터를 생성할 때 회전 강성의 손상은 1.0, 0.75, 0.5 등 세 가지 중 하나의 값을 가지도록 하였다. 예제 검증을 통해 제시하는 기법은 손상 위치 및 수준을 정확하게 예측하는 것으로 나타났다. 제시하는 기법은 손상지표, 1차, 2차 고유진동수 및 모드형상 등에 대해 매우 유사한 결과를 제시하는 것으로 확인되었다.

QFN 납땜 불량 검출을 위한 효율적인 검사 기법 (Efficient Mechanism for QFN Solder Defect Detection)

  • 김호중;조태훈
    • 한국정보통신학회:학술대회논문집
    • /
    • 한국정보통신학회 2016년도 춘계학술대회
    • /
    • pp.367-370
    • /
    • 2016
  • QFN(Quad Flat No-leads package)은 SMD(Surface Mount Device) 자재 중의 하나로써, 납땜을 하는 lead 부분이 따로 있지 않아 납땜에 대한 불량이 많이 발생하고 있다. 따라서 본 논문에서는 QFN의 납땜에 대한 불량을 검출하는 기법을 제안하고자 한다. 우리는 QFN의 납땜에 대한 불량 검출을 위해 기계학습 방법 중 하나인 Convolutional Neural Network(CNN)을 사용하였고, CNN에 학습을 시키기 위한 데이터로는 납땜을 한 QFN 컬러 다단 영상을 사용하였다. 이 영상은 3채널 컬러 영상으로, 이를 바로 CNN에 적용시켜 학습시키기에는 문제가 있다. 그렇기 때문에 3채널 컬러 영상을 세개의 1채널 Grayscale 영상(Red, Green, Blue)로 분리시켜 CNN에 적용시켰다. 이렇게 학습시킨 결과를 이용하여 QFN의 납땜에 대한 불량을 검출할 수 있었다. 현재는 Dicing과 Punch에 대해서만 테스트를 해보았기 때문에, 추후에 이를 제외한 다른 것들에 대한 추가적인 연구가 필요하다.

  • PDF

딥러닝 기반 제조 공장 내 AGV 객체 인식에 대한 연구 (Object Detection of AGV in Manufacturing Plants using Deep Learning)

  • 이길원;이활리;정희운
    • 한국정보통신학회논문지
    • /
    • 제25권1호
    • /
    • pp.36-43
    • /
    • 2021
  • 본 논문에서는 제조 공장 내 AGV (Automated Guided Vehicle) 주행 중 객체 인식을 위한 YOLO v3 알고리즘의 정확도에 대해 살펴보았다. 실험을 위해 2D LiDAR 및 스테레오 카메라가 장착된 AGV를 준비하였다. AGV 주행 중 2D LiDAR를 활용한 SLAM 기법으로 지도 정보를 획득하였고 스테레오 카메라를 활용한 객체 인식이 이루어졌다. 그리고 YOLO v3 알고리즘 기반의 학습 정도에 따른 재현율, AP, mAP 등을 측정하였다. 실험 결과, 4000장의 train data 와 500장의 test data 로 훈련된 YOLO v3 알고리즘에 AGV에 장착된 스테레오 카메라의 시점과 높이에서 획득한 1200장의 이미지를 추가로 학습할 경우 mAP가 약 10% 향상되었다. 정밀도(precision) 와 재현율 역시 각각 6.8%와 16.4% 향상되었다.

LSTM based Supply Imbalance Detection and Identification in Loaded Three Phase Induction Motors

  • Majid, Hussain;Fayaz Ahmed, Memon;Umair, Saeed;Babar, Rustum;Kelash, Kanwar;Abdul Rafay, Khatri
    • International Journal of Computer Science & Network Security
    • /
    • 제23권1호
    • /
    • pp.147-152
    • /
    • 2023
  • Mostly in motor fault detection the instantaneous values 3 axis vibration and 3phase current in time domain are acquired and converted to frequency domain. Vibrations are more useful in diagnosing the mechanical faults and motor current has remained more useful in electrical fault diagnosis. With having some experience and knowledge on the behavior of acquired data the electrical and mechanical faults are diagnosed through signal processing techniques or combine machine learning and signal processing techniques. In this paper, a single-layer LSTM based condition monitoring system is proposed in which the instantaneous values of three phased motor current are firstly acquired in simulated motor in in health and supply imbalance conditions in each of three stator currents. The acquired three phase current in time domain is then used to train a LSTM network, which can identify the type of fault in electrical supply of motor and phase in which the fault has occurred. Experimental results shows that the proposed single layer LSTM algorithm can identify the electrical supply faults and phase of fault with an average accuracy of 88% based on the three phase stator current as raw data without any processing or feature extraction.

YOLO 기반 실종자 수색 AI 응용 시스템 구현 (Implementation of YOLO based Missing Person Search Al Application System)

  • 김하연;김종훈;정세훈;심춘보
    • 스마트미디어저널
    • /
    • 제12권9호
    • /
    • pp.159-170
    • /
    • 2023
  • 실종자 수색은 많은 시간과 인력이 필요하다. 그 해결책의 일환으로 YOLO 기반 모델을 활용하여 실종자 수색 AI 시스템을 구현하였다. 객 객체 탐지 모델을 훈련하기 위해 AI-Hub에서 드론 이동체 인지 영상(도로 고정)을 수집하고 모델을 학습하였다. 또한, 훈련 데이터 세트와 상이한 환경에서의 성능을 평가하기 위해 산악 환경 데이터 세트를 추가 수집하였다. 실종자 수색 AI 시스템의 최적화를 위해 모델 크기 및 하이퍼파라미터에 따른 성능평가, 과대적합 우려에 대한 추가 성능평가를 시행하였다. 성능평가 결과 YOLOv5-L 모델이 우수한 성능을 보이는 것을 확인할 수 있었으며 데이터 증강 기법을 적용함에 따라 모델의 성능이 보다 향상되었다. 이후 웹 서비스에는 데이터 증강 기법을 적용한 YOLOv5-L 모델을 적용하여 실종자 수색의 효율성을 높였다.

Diagnostic Performance of Deep Learning-Based Lesion Detection Algorithm in CT for Detecting Hepatic Metastasis from Colorectal Cancer

  • Kiwook Kim;Sungwon Kim;Kyunghwa Han;Heejin Bae;Jaeseung Shin;Joon Seok Lim
    • Korean Journal of Radiology
    • /
    • 제22권6호
    • /
    • pp.912-921
    • /
    • 2021
  • Objective: To compare the performance of the deep learning-based lesion detection algorithm (DLLD) in detecting liver metastasis with that of radiologists. Materials and Methods: This clinical retrospective study used 4386-slice computed tomography (CT) images and labels from a training cohort (502 patients with colorectal cancer [CRC] from November 2005 to December 2010) to train the DLLD for detecting liver metastasis, and used CT images of a validation cohort (40 patients with 99 liver metastatic lesions and 45 patients without liver metastasis from January 2011 to December 2011) for comparing the performance of the DLLD with that of readers (three abdominal radiologists and three radiology residents). For per-lesion binary classification, the sensitivity and false positives per patient were measured. Results: A total of 85 patients with CRC were included in the validation cohort. In the comparison based on per-lesion binary classification, the sensitivity of DLLD (81.82%, [81/99]) was comparable to that of abdominal radiologists (80.81%, p = 0.80) and radiology residents (79.46%, p = 0.57). However, the false positives per patient with DLLD (1.330) was higher than that of abdominal radiologists (0.357, p < 0.001) and radiology residents (0.667, p < 0.001). Conclusion: DLLD showed a sensitivity comparable to that of radiologists when detecting liver metastasis in patients initially diagnosed with CRC. However, the false positives of DLLD were higher than those of radiologists. Therefore, DLLD could serve as an assistant tool for detecting liver metastasis instead of a standalone diagnostic tool.

한정된 레이블 데이터를 이용한 효율적인 철도 표면 결함 감지 방법 (An Efficient Detection Method for Rail Surface Defect using Limited Label Data)

  • 한석민
    • 한국인터넷방송통신학회논문지
    • /
    • 제24권1호
    • /
    • pp.83-88
    • /
    • 2024
  • 본 연구에서는 Railroad surface 데이터를 활용하여 Semi-Supervised learning방식으로 railroad surface의 defect를 검출해내는 방안을 제안한다. Resnet50에 ImageNet으로 pretrained된 모델을 이용한다. Label이 없는 데이터에서 무작위로 데이터를 선정, 선정한 데이터에 label을 부여한 뒤 이 데이터로 모델을 학습시킨다. 학습된 모델을 이용하여 나머지 데이터의 결과값을 예측한 후, 그 예측값이 일정한 threshold보다 큰 것을 골라내고, threshold보다 큰 값들을 값이 큰 순서대로 정렬하여, 일정한 크기만큼 training data에 추가한다. 이 때, 각 class에 속할 확률이 높은 쪽으로 pseudo-labeling을 수행한다. 초기에 label이 부여된 데이터 개수에 따른 전체적인 class 분류 성능을 확인하는 실험 또한 진행하였고, 전체 training data대비 10% 미만의 labeled data로 최대 98%의 정확도를 얻는 성능을 보였다.

Refinement of damage identification capability of neural network techniques in application to a suspension bridge

  • Wang, J.Y.;Ni, Y.Q.
    • Structural Monitoring and Maintenance
    • /
    • 제2권1호
    • /
    • pp.77-93
    • /
    • 2015
  • The idea of using measured dynamic characteristics for damage detection is attractive because it allows for a global evaluation of the structural health and condition. However, vibration-based damage detection for complex structures such as long-span cable-supported bridges still remains a challenge. As a suspension or cable-stayed bridge involves in general thousands of structural components, the conventional damage detection methods based on model updating and/or parameter identification might result in ill-conditioning and non-uniqueness in the solution of inverse problems. Alternatively, methods that utilize, to the utmost extent, information from forward problems and avoid direct solution to inverse problems would be more suitable for vibration-based damage detection of long-span cable-supported bridges. The auto-associative neural network (ANN) technique and the probabilistic neural network (PNN) technique, that both eschew inverse problems, have been proposed for identifying and locating damage in suspension and cable-stayed bridges. Without the help of a structural model, ANNs with appropriate configuration can be trained using only the measured modal frequencies from healthy structure under varying environmental conditions, and a new set of modal frequency data acquired from an unknown state of the structure is then fed into the trained ANNs for damage presence identification. With the help of a structural model, PNNs can be configured using the relative changes of modal frequencies before and after damage by assuming damage at different locations, and then the measured modal frequencies from the structure can be presented to locate the damage. However, such formulated ANNs and PNNs may still be incompetent to identify damage occurring at the deck members of a cable-supported bridge because of very low modal sensitivity to the damage. The present study endeavors to enhance the damage identification capability of ANNs and PNNs when being applied for identification of damage incurred at deck members. Effort is first made to construct combined modal parameters which are synthesized from measured modal frequencies and modal shape components to train ANNs for damage alarming. With the purpose of improving identification accuracy, effort is then made to configure PNNs for damage localization by adapting the smoothing parameter in the Bayesian classifier to different values for different pattern classes. The performance of the ANNs with their input being modal frequencies and the combined modal parameters respectively and the PNNs with constant and adaptive smoothing parameters respectively is evaluated through simulation studies of identifying damage inflicted on different deck members of the double-deck suspension Tsing Ma Bridge.

YOLOv4 네트워크를 이용한 자동운전 데이터 분할이 검출성능에 미치는 영향 (Influence of Self-driving Data Set Partition on Detection Performance Using YOLOv4 Network)

  • 왕욱비;진락;이추담;손진구;정석용;송정영
    • 한국인터넷방송통신학회논문지
    • /
    • 제20권6호
    • /
    • pp.157-165
    • /
    • 2020
  • 뉴-럴 네트워크와 자동운전 데이터 셋을 개발하는 목표중의 하나가 데이터 셋을 분할함에 따라서 움직이는 물체를 검출하는 성능을 개선하는 방법이 있다. 다크넷 (DarkNet) 프레임 워크에 있어서, YOLOv4 네트워크는 Udacity 데이터 셋에서 훈련하는 셋과 검증 셋으로 사용되었다. Udacity 데이터 셋의 7개 비율에 따라서 이 데이터 셋은 훈련 셋, 검증 셋, 테스트 셋을 포함한 3개의 부분 셋으로 나누어진다. K-means++ 알고리즘은 7개 그룹에서 개체 Box 차원 군집화를 수행하기 위해 사용되었다. 훈련을 위한 YOLOv4 네트워크의 슈퍼 파라메타를 조절하여 7개 그룹들에 대하여 최적 모델 파라메타가 각각 구해졌다. 이 모델 파라메타는 각각 7 개 테스트 셋 데이터에 비교하고 검출에 사용되었다. 실험결과에서 YOLOv4 네트워크는 Udacity 데이터 셋에서 트럭, 자동차, 행인으로 표현되는 움직이는 물체에 대하여 대/중/소 물체 검출을 할수 있음을 보여 주었다. 훈련 셋과 검증 셋, 테스트 셋의 비율이 7 ; 1.5 ; 1.5 일 때 최적의 모델 파라메타로서 가장 높은 검출 성능이었다. 그 결과값은, mAP50가 80.89%, mAP75가 47.08%에 달하고, 검출 속도는 10.56 FPS에 달한다.