For an automotive surveillance radar system, fast-chirp train based FMCW (Frequency Modulated Continuous Wave) radar is a very effective method, because clutter and moving targets are easily separated in a 2D range-velocity map. However, pedestrians with low echo signals may be masked by strong clutter in actual field. To address this problem, we proposed in the previous work a clutter cancellation and moving target indication algorithm using the coherent phase method. In the present paper, we initially composed the test set-up using a 24 GHz FMCW transceiver and a real-time data logging board in order to verify this algorithm. Next, we created two indoor test environments consisting of moving human and stationary targets. It was found that pedestrians and strong clutter could be effectively separated when the proposed method is used. We also designed and implemented these algorithms in FPGA (Field Programmable Gate Array) in order to analyze the hardware and time complexities. The results demonstrated that the complexity overhead was nearly zero compared to when the typical method was used.
본 연구는 인공신경망을 이용해 철골모멘트골조의 접합부 손상을 예측하는 기법을 제안한다. 인공신경망의 입력층에는 기둥 부재의 휨모멘트, 고유진동수, 모드형상 정보가 사용되며, 출력층에는 구조물 접합부의 회전강성 손상지표가 사용한다. 손상지표는 각 접합부의 손상정도를 의미한다. 5층 철골모멘트골조 예제의 수치해석을 통해 훈련 및 검증용 데이터를 생성한다. 총 829가지의 손상 시나리오가 고려된다. 시뮬레이션은 OpenSees를 이용해 반복 실행하여 데이터를 얻도록 하였으며, 훈련용 데이터를 생성할 때 회전 강성의 손상은 1.0, 0.75, 0.5 등 세 가지 중 하나의 값을 가지도록 하였다. 예제 검증을 통해 제시하는 기법은 손상 위치 및 수준을 정확하게 예측하는 것으로 나타났다. 제시하는 기법은 손상지표, 1차, 2차 고유진동수 및 모드형상 등에 대해 매우 유사한 결과를 제시하는 것으로 확인되었다.
QFN(Quad Flat No-leads package)은 SMD(Surface Mount Device) 자재 중의 하나로써, 납땜을 하는 lead 부분이 따로 있지 않아 납땜에 대한 불량이 많이 발생하고 있다. 따라서 본 논문에서는 QFN의 납땜에 대한 불량을 검출하는 기법을 제안하고자 한다. 우리는 QFN의 납땜에 대한 불량 검출을 위해 기계학습 방법 중 하나인 Convolutional Neural Network(CNN)을 사용하였고, CNN에 학습을 시키기 위한 데이터로는 납땜을 한 QFN 컬러 다단 영상을 사용하였다. 이 영상은 3채널 컬러 영상으로, 이를 바로 CNN에 적용시켜 학습시키기에는 문제가 있다. 그렇기 때문에 3채널 컬러 영상을 세개의 1채널 Grayscale 영상(Red, Green, Blue)로 분리시켜 CNN에 적용시켰다. 이렇게 학습시킨 결과를 이용하여 QFN의 납땜에 대한 불량을 검출할 수 있었다. 현재는 Dicing과 Punch에 대해서만 테스트를 해보았기 때문에, 추후에 이를 제외한 다른 것들에 대한 추가적인 연구가 필요하다.
본 논문에서는 제조 공장 내 AGV (Automated Guided Vehicle) 주행 중 객체 인식을 위한 YOLO v3 알고리즘의 정확도에 대해 살펴보았다. 실험을 위해 2D LiDAR 및 스테레오 카메라가 장착된 AGV를 준비하였다. AGV 주행 중 2D LiDAR를 활용한 SLAM 기법으로 지도 정보를 획득하였고 스테레오 카메라를 활용한 객체 인식이 이루어졌다. 그리고 YOLO v3 알고리즘 기반의 학습 정도에 따른 재현율, AP, mAP 등을 측정하였다. 실험 결과, 4000장의 train data 와 500장의 test data 로 훈련된 YOLO v3 알고리즘에 AGV에 장착된 스테레오 카메라의 시점과 높이에서 획득한 1200장의 이미지를 추가로 학습할 경우 mAP가 약 10% 향상되었다. 정밀도(precision) 와 재현율 역시 각각 6.8%와 16.4% 향상되었다.
International Journal of Computer Science & Network Security
/
제23권1호
/
pp.147-152
/
2023
Mostly in motor fault detection the instantaneous values 3 axis vibration and 3phase current in time domain are acquired and converted to frequency domain. Vibrations are more useful in diagnosing the mechanical faults and motor current has remained more useful in electrical fault diagnosis. With having some experience and knowledge on the behavior of acquired data the electrical and mechanical faults are diagnosed through signal processing techniques or combine machine learning and signal processing techniques. In this paper, a single-layer LSTM based condition monitoring system is proposed in which the instantaneous values of three phased motor current are firstly acquired in simulated motor in in health and supply imbalance conditions in each of three stator currents. The acquired three phase current in time domain is then used to train a LSTM network, which can identify the type of fault in electrical supply of motor and phase in which the fault has occurred. Experimental results shows that the proposed single layer LSTM algorithm can identify the electrical supply faults and phase of fault with an average accuracy of 88% based on the three phase stator current as raw data without any processing or feature extraction.
실종자 수색은 많은 시간과 인력이 필요하다. 그 해결책의 일환으로 YOLO 기반 모델을 활용하여 실종자 수색 AI 시스템을 구현하였다. 객 객체 탐지 모델을 훈련하기 위해 AI-Hub에서 드론 이동체 인지 영상(도로 고정)을 수집하고 모델을 학습하였다. 또한, 훈련 데이터 세트와 상이한 환경에서의 성능을 평가하기 위해 산악 환경 데이터 세트를 추가 수집하였다. 실종자 수색 AI 시스템의 최적화를 위해 모델 크기 및 하이퍼파라미터에 따른 성능평가, 과대적합 우려에 대한 추가 성능평가를 시행하였다. 성능평가 결과 YOLOv5-L 모델이 우수한 성능을 보이는 것을 확인할 수 있었으며 데이터 증강 기법을 적용함에 따라 모델의 성능이 보다 향상되었다. 이후 웹 서비스에는 데이터 증강 기법을 적용한 YOLOv5-L 모델을 적용하여 실종자 수색의 효율성을 높였다.
Objective: To compare the performance of the deep learning-based lesion detection algorithm (DLLD) in detecting liver metastasis with that of radiologists. Materials and Methods: This clinical retrospective study used 4386-slice computed tomography (CT) images and labels from a training cohort (502 patients with colorectal cancer [CRC] from November 2005 to December 2010) to train the DLLD for detecting liver metastasis, and used CT images of a validation cohort (40 patients with 99 liver metastatic lesions and 45 patients without liver metastasis from January 2011 to December 2011) for comparing the performance of the DLLD with that of readers (three abdominal radiologists and three radiology residents). For per-lesion binary classification, the sensitivity and false positives per patient were measured. Results: A total of 85 patients with CRC were included in the validation cohort. In the comparison based on per-lesion binary classification, the sensitivity of DLLD (81.82%, [81/99]) was comparable to that of abdominal radiologists (80.81%, p = 0.80) and radiology residents (79.46%, p = 0.57). However, the false positives per patient with DLLD (1.330) was higher than that of abdominal radiologists (0.357, p < 0.001) and radiology residents (0.667, p < 0.001). Conclusion: DLLD showed a sensitivity comparable to that of radiologists when detecting liver metastasis in patients initially diagnosed with CRC. However, the false positives of DLLD were higher than those of radiologists. Therefore, DLLD could serve as an assistant tool for detecting liver metastasis instead of a standalone diagnostic tool.
본 연구에서는 Railroad surface 데이터를 활용하여 Semi-Supervised learning방식으로 railroad surface의 defect를 검출해내는 방안을 제안한다. Resnet50에 ImageNet으로 pretrained된 모델을 이용한다. Label이 없는 데이터에서 무작위로 데이터를 선정, 선정한 데이터에 label을 부여한 뒤 이 데이터로 모델을 학습시킨다. 학습된 모델을 이용하여 나머지 데이터의 결과값을 예측한 후, 그 예측값이 일정한 threshold보다 큰 것을 골라내고, threshold보다 큰 값들을 값이 큰 순서대로 정렬하여, 일정한 크기만큼 training data에 추가한다. 이 때, 각 class에 속할 확률이 높은 쪽으로 pseudo-labeling을 수행한다. 초기에 label이 부여된 데이터 개수에 따른 전체적인 class 분류 성능을 확인하는 실험 또한 진행하였고, 전체 training data대비 10% 미만의 labeled data로 최대 98%의 정확도를 얻는 성능을 보였다.
The idea of using measured dynamic characteristics for damage detection is attractive because it allows for a global evaluation of the structural health and condition. However, vibration-based damage detection for complex structures such as long-span cable-supported bridges still remains a challenge. As a suspension or cable-stayed bridge involves in general thousands of structural components, the conventional damage detection methods based on model updating and/or parameter identification might result in ill-conditioning and non-uniqueness in the solution of inverse problems. Alternatively, methods that utilize, to the utmost extent, information from forward problems and avoid direct solution to inverse problems would be more suitable for vibration-based damage detection of long-span cable-supported bridges. The auto-associative neural network (ANN) technique and the probabilistic neural network (PNN) technique, that both eschew inverse problems, have been proposed for identifying and locating damage in suspension and cable-stayed bridges. Without the help of a structural model, ANNs with appropriate configuration can be trained using only the measured modal frequencies from healthy structure under varying environmental conditions, and a new set of modal frequency data acquired from an unknown state of the structure is then fed into the trained ANNs for damage presence identification. With the help of a structural model, PNNs can be configured using the relative changes of modal frequencies before and after damage by assuming damage at different locations, and then the measured modal frequencies from the structure can be presented to locate the damage. However, such formulated ANNs and PNNs may still be incompetent to identify damage occurring at the deck members of a cable-supported bridge because of very low modal sensitivity to the damage. The present study endeavors to enhance the damage identification capability of ANNs and PNNs when being applied for identification of damage incurred at deck members. Effort is first made to construct combined modal parameters which are synthesized from measured modal frequencies and modal shape components to train ANNs for damage alarming. With the purpose of improving identification accuracy, effort is then made to configure PNNs for damage localization by adapting the smoothing parameter in the Bayesian classifier to different values for different pattern classes. The performance of the ANNs with their input being modal frequencies and the combined modal parameters respectively and the PNNs with constant and adaptive smoothing parameters respectively is evaluated through simulation studies of identifying damage inflicted on different deck members of the double-deck suspension Tsing Ma Bridge.
뉴-럴 네트워크와 자동운전 데이터 셋을 개발하는 목표중의 하나가 데이터 셋을 분할함에 따라서 움직이는 물체를 검출하는 성능을 개선하는 방법이 있다. 다크넷 (DarkNet) 프레임 워크에 있어서, YOLOv4 네트워크는 Udacity 데이터 셋에서 훈련하는 셋과 검증 셋으로 사용되었다. Udacity 데이터 셋의 7개 비율에 따라서 이 데이터 셋은 훈련 셋, 검증 셋, 테스트 셋을 포함한 3개의 부분 셋으로 나누어진다. K-means++ 알고리즘은 7개 그룹에서 개체 Box 차원 군집화를 수행하기 위해 사용되었다. 훈련을 위한 YOLOv4 네트워크의 슈퍼 파라메타를 조절하여 7개 그룹들에 대하여 최적 모델 파라메타가 각각 구해졌다. 이 모델 파라메타는 각각 7 개 테스트 셋 데이터에 비교하고 검출에 사용되었다. 실험결과에서 YOLOv4 네트워크는 Udacity 데이터 셋에서 트럭, 자동차, 행인으로 표현되는 움직이는 물체에 대하여 대/중/소 물체 검출을 할수 있음을 보여 주었다. 훈련 셋과 검증 셋, 테스트 셋의 비율이 7 ; 1.5 ; 1.5 일 때 최적의 모델 파라메타로서 가장 높은 검출 성능이었다. 그 결과값은, mAP50가 80.89%, mAP75가 47.08%에 달하고, 검출 속도는 10.56 FPS에 달한다.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.