• Title/Summary/Keyword: Train detection

Search Result 385, Processing Time 0.025 seconds

Doppler Frequency Compensated Detection and Ranging Algorithm for High-speed Targets (도플러 주파수가 보상된 고속 표적 탐지 및 레인징 알고리즘)

  • Youn, Jae-Hyuk;Kim, Kwan-Soo;Yang, Hoon-Gee;Chung, Young-Seek;Lee, Won-Woo;Bae, Kyung-Bin
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.35 no.12B
    • /
    • pp.1244-1250
    • /
    • 2010
  • This paper presents a detection and ranging algorithm for a high-speed targets in the high PRF radar. We show, unlike the conventional methods, it firstly estimates Doppler frequency with a quasi-periodic pulse train prior to range processing. The estimated Doppler frequency can compensate the phase error enbeded in the received signal, which makes the signal integrated coherently in the range direction and localizes the target's signiture in low SNR. We present the derivation of the proposed algorithm and discuss how the system parameters such as the range/Doppler sampling condition, processing time and Doppler estimation error affect the performance of the proposed algorithm, which is verified by simulations.

Automatic Detection System for Dangerous Abandoned Objects Based on Vision Technology (비전 기술에 기반한 위험 유기물의 자동 검출 시스템)

  • Kim, Won
    • The Journal of the Institute of Internet, Broadcasting and Communication
    • /
    • v.9 no.4
    • /
    • pp.69-74
    • /
    • 2009
  • Abandoned objects should be treated as possibly dangerous things for public areas until they turn out to be safe because explosive material or chemical substance is intentionally contained in them for public terrors. For large public areas such as airports or train stations, there are limits in man-power for security staffs to check all the monitors for covering the entire area under surveillance. This is the basic motivation of developing the automatic detection system for dangerous abandoned objects based on vision technology. In this research, well-known DBE is applied to stably extract background images and the HOG algorithm is adapted to discriminate between human and stuff for object classification. To show the effectiveness of the proposed system, experiments are carried out in detecting intrusion for a forbidden area and alarming for abandoned objects in a room under surveillance.

  • PDF

A Study on Cepstrum Analysis for Wheel Flat Detection in Railway Vehicles (차륜의 찰상결함 진단을 위한 켑스트럼 분석 방법 연구)

  • Kim, Geoyoung;Kim, Hyuntae;Koo, Jeongseo
    • Journal of the Korean Society of Safety
    • /
    • v.31 no.3
    • /
    • pp.28-33
    • /
    • 2016
  • Since defects in the wheels of railway vehicles, which occur due to wears with the rail, cause serious damage to the running device, the diagnostic monitoring system for condition-based maintenance is required to secure the driving safety. In this paper, we studied to apply a useful Cepstrum analysis to detect periodic structure in spectrum among the vibration signal processing techniques for the fault diagnosis of a rotating body such as wheel. In order to analyze in variations of train velocity, the Cepstrum analysis was performed after a domain change of the vibration signal from time domain to rotation angle domain. When domains change, it is important to use a interpolation for a uniform interval of the rotation angle. Finally, the Cepstrum analysis for wheel flat detection was verified by using the vibration signal including the disturbance resulting from the rail irregularities and the vibration of bogie components.

Voice Activity Detection Based on SNR and Non-Intrusive Speech Intelligibility Estimation

  • An, Soo Jeong;Choi, Seung Ho
    • International Journal of Internet, Broadcasting and Communication
    • /
    • v.11 no.4
    • /
    • pp.26-30
    • /
    • 2019
  • This paper proposes a new voice activity detection (VAD) method which is based on SNR and non-intrusive speech intelligibility estimation. In the conventional SNR-based VAD methods, voice activity probability is obtained by estimating frame-wise SNR at each spectral component. However these methods lack performance in various noisy environments. We devise a hybrid VAD method that uses non-intrusive speech intelligibility estimation as well as SNR estimation, where the speech intelligibility score is estimated based on deep neural network. In order to train model parameters of deep neural network, we use MFCC vector and the intrusive speech intelligibility score, STOI (Short-Time Objective Intelligent Measure), as input and output, respectively. We developed speech presence measure to classify each noisy frame as voice or non-voice by calculating the weighted average of the estimated STOI value and the conventional SNR-based VAD value at each frame. Experimental results show that the proposed method has better performance than the conventional VAD method in various noisy environments, especially when the SNR is very low.

Monocular Camera based Real-Time Object Detection and Distance Estimation Using Deep Learning (딥러닝을 활용한 단안 카메라 기반 실시간 물체 검출 및 거리 추정)

  • Kim, Hyunwoo;Park, Sanghyun
    • The Journal of Korea Robotics Society
    • /
    • v.14 no.4
    • /
    • pp.357-362
    • /
    • 2019
  • This paper proposes a model and train method that can real-time detect objects and distances estimation based on a monocular camera by applying deep learning. It used YOLOv2 model which is applied to autonomous or robot due to the fast image processing speed. We have changed and learned the loss function so that the YOLOv2 model can detect objects and distances at the same time. The YOLOv2 loss function added a term for learning bounding box values x, y, w, h, and distance values z as 클래스ification losses. In addition, the learning was carried out by multiplying the distance term with parameters for the balance of learning. we trained the model location, recognition by camera and distance data measured by lidar so that we enable the model to estimate distance and objects from a monocular camera, even when the vehicle is going up or down hill. To evaluate the performance of object detection and distance estimation, MAP (Mean Average Precision) and Adjust R square were used and performance was compared with previous research papers. In addition, we compared the original YOLOv2 model FPS (Frame Per Second) for speed measurement with FPS of our model.

Detection of Needle in trimmings or meat offals using DCGAN (DCGAN을 이용한 잡육에서의 바늘 검출)

  • Jang, Won-Jae;Cha, Yun-Seok;Keum, Ye-Eun;Lee, Ye-Jin;Kim, Jeong-Do
    • Journal of Sensor Science and Technology
    • /
    • v.30 no.5
    • /
    • pp.300-308
    • /
    • 2021
  • Usually, during slaughter, the meat is divided into large chunks by part after deboning. The meat chunks are inspected for the presence of needles with an X-ray scanner. Although needles in the meat chunks are easily detectable, they can also be found in trimmings and meat offals, where meat skins, fat chunks, and pieces of meat from different parts get agglomerated. Detection of needles in trimmings and meat offals becomes challenging because of many needle-like patterns that are detected by the X-ray scanner. This problem can be solved by learning the trimmings or meat offals using deep learning. However, it is not easy to collect a large number of learning patterns in trimmings or meat offals. In this study, we demonstrate the use of deep convolutional generative adversarial network (DCGAN) to create fake images of trimmings or meat offals and train them using a convolution neural network (CNN).

Adaptive boosting in ensembles for outlier detection: Base learner selection and fusion via local domain competence

  • Bii, Joash Kiprotich;Rimiru, Richard;Mwangi, Ronald Waweru
    • ETRI Journal
    • /
    • v.42 no.6
    • /
    • pp.886-898
    • /
    • 2020
  • Unusual data patterns or outliers can be generated because of human errors, incorrect measurements, or malicious activities. Detecting outliers is a difficult task that requires complex ensembles. An ideal outlier detection ensemble should consider the strengths of individual base detectors while carefully combining their outputs to create a strong overall ensemble and achieve unbiased accuracy with minimal variance. Selecting and combining the outputs of dissimilar base learners is a challenging task. This paper proposes a model that utilizes heterogeneous base learners. It adaptively boosts the outcomes of preceding learners in the first phase by assigning weights and identifying high-performing learners based on their local domains, and then carefully fuses their outcomes in the second phase to improve overall accuracy. Experimental results from 10 benchmark datasets are used to train and test the proposed model. To investigate its accuracy in terms of separating outliers from inliers, the proposed model is tested and evaluated using accuracy metrics. The analyzed data are presented as crosstabs and percentages, followed by a descriptive method for synthesis and interpretation.

A Computer-Aided Diagnosis of Brain Tumors Using a Fine-Tuned YOLO-based Model with Transfer Learning

  • Montalbo, Francis Jesmar P.
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.14 no.12
    • /
    • pp.4816-4834
    • /
    • 2020
  • This paper proposes transfer learning and fine-tuning techniques for a deep learning model to detect three distinct brain tumors from Magnetic Resonance Imaging (MRI) scans. In this work, the recent YOLOv4 model trained using a collection of 3064 T1-weighted Contrast-Enhanced (CE)-MRI scans that were pre-processed and labeled for the task. This work trained with the partial 29-layer YOLOv4-Tiny and fine-tuned to work optimally and run efficiently in most platforms with reliable performance. With the help of transfer learning, the model had initial leverage to train faster with pre-trained weights from the COCO dataset, generating a robust set of features required for brain tumor detection. The results yielded the highest mean average precision of 93.14%, a 90.34% precision, 88.58% recall, and 89.45% F1-Score outperforming other previous versions of the YOLO detection models and other studies that used bounding box detections for the same task like Faster R-CNN. As concluded, the YOLOv4-Tiny can work efficiently to detect brain tumors automatically at a rapid phase with the help of proper fine-tuning and transfer learning. This work contributes mainly to assist medical experts in the diagnostic process of brain tumors.

RDNN: Rumor Detection Neural Network for Veracity Analysis in Social Media Text

  • SuthanthiraDevi, P;Karthika, S
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.16 no.12
    • /
    • pp.3868-3888
    • /
    • 2022
  • A widely used social networking service like Twitter has the ability to disseminate information to large groups of people even during a pandemic. At the same time, it is a convenient medium to share irrelevant and unverified information online and poses a potential threat to society. In this research, conventional machine learning algorithms are analyzed to classify the data as either non-rumor data or rumor data. Machine learning techniques have limited tuning capability and make decisions based on their learning. To tackle this problem the authors propose a deep learning-based Rumor Detection Neural Network model to predict the rumor tweet in real-world events. This model comprises three layers, AttCNN layer is used to extract local and position invariant features from the data, AttBi-LSTM layer to extract important semantic or contextual information and HPOOL to combine the down sampling patches of the input feature maps from the average and maximum pooling layers. A dataset from Kaggle and ground dataset #gaja are used to train the proposed Rumor Detection Neural Network to determine the veracity of the rumor. The experimental results of the RDNN Classifier demonstrate an accuracy of 93.24% and 95.41% in identifying rumor tweets in real-time events.

Online Multi-Task Learning and Wearable Biosensor-based Detection of Multiple Seniors' Stress in Daily Interaction with the Urban Environment

  • Lee, Gaang;Jebelli, Houtan;Lee, SangHyun
    • International conference on construction engineering and project management
    • /
    • 2020.12a
    • /
    • pp.387-396
    • /
    • 2020
  • Wearable biosensors have the potential to non-invasively and continuously monitor seniors' stress in their daily interaction with the urban environment, thereby enabling to address the stress and ultimately advance their outdoor mobility. However, current wearable biosensor-based stress detection methods have several drawbacks in field application due to their dependence on batch-learning algorithms. First, these methods train a single classifier, which might not account for multiple subjects' different physiological reactivity to stress. Second, they require a great deal of computational power to store and reuse all previous data for updating the signle classifier. To address this issue, we tested the feasibility of online multi-task learning (OMTL) algorithms to identify multiple seniors' stress from electrodermal activity (EDA) collected by a wristband-type biosensor in a daily trip setting. As a result, OMTL algorithms showed the higher test accuracy (75.7%, 76.2%, and 71.2%) than a batch-learning algorithm (64.8%). This finding demonstrates that the OMTL algorithms can strengthen the field applicability of the wearable biosensor-based stress detection, thereby contributing to better understanding the seniors' stress in the urban environment and ultimately advancing their mobility.

  • PDF