• 제목/요약/키워드: Train Wind

검색결과 253건 처리시간 0.019초

기계학습을 통한 여름철 노면상태 추정 알고리즘 개발 (Estimation of Road Surface Condition during Summer Season Using Machine Learning)

  • 여지호;이주영;김강화;장기태
    • 한국ITS학회 논문지
    • /
    • 제17권6호
    • /
    • pp.121-132
    • /
    • 2018
  • 기상은 교통흐름, 운전자의 주행패턴, 교통사고 등 여러 방면에서 도로교통에 영향을 미치는 중요한 요인이다. 본 연구는 기상상황과 노면상태 사이의 관계에 초점을 맞추어 기계학습을 통해 도로의 노면상태를 추정하는 모델을 개발하였다. 노면 상태의 수집을 위해 실험 차량에 노면센서를 부착하여 '건조', '습윤', '젖음', 3가지 범주로 구분된 노면상태 정보를 수집하였고, 이를 추정하기 위한 변수로 도로의 기하구조 정보(곡률, 구배), 교통정보(교통량), 기상정보(강우량, 습도, 온도, 풍속)를 활용하였다. 노면 상태를 예측하기 위한 알고리즘으로는 다양한 기계학습 알고리즘이 검토되었으며, 그 중 가장 높은 정확도를 보인 'Random forest'를 기반으로 한 2단계 분류모형을 구축하였다. 총 16일의 실측 데이터 중 14일의 데이터를 모델을 학습하는 데 활용하였고, 2일의 데이터를 모형의 정확도를 검증하기 위해 사용하였다. 그 결과 81.74%의 검증 정확도를 가지는 노면상태 예측 모델을 구축하였다. 본 연구의 결과는 기상청에서 관측하는 기상정보로 도로의 노면상태를 추정할 수 있다는 가능성을 보여주며, 새로운 장비나 센서를 설치하지 않고도 기존의 기상 관측 정보와 교통정보 등을 활용하여 노면의 상태를 추정할 수 있음을 시사한다.

비전센서 및 딥러닝을 이용한 항만구조물 방충설비 세분화 시스템 개발 (Development of Fender Segmentation System for Port Structures using Vision Sensor and Deep Learning)

  • 민지영;유병준;김종혁;전해민
    • 한국구조물진단유지관리공학회 논문집
    • /
    • 제26권2호
    • /
    • pp.28-36
    • /
    • 2022
  • 매립지 위에 건설되는 항만시설물은 바람(태풍), 파랑, 선박과의 충돌 등 극한 외부 하중에 노출되기 때문에 구조물의 안전성 및 사용성을 주기적으로 평가하는 것이 중요하다. 본 논문에서는 항만 계류시설에 설치된 방충설비의 유지관리를 위하여 비전 및 딥러닝 기반의 방충설비 세분화(segmentation) 시스템을 개발하였다. 방충설비 세분화를 위하여 인코더-디코더 형식과 인간 시각체계의 편심 기능에서 영감을 얻은 수용 영역 블록(Receptive field block) 기반의 합성곱 모듈을 DenseNet 형식으로 개선하는 딥러닝 네트워크를 제안하였다. 네트워크 훈련을 위해 BP형, V형, 원통형, 타이어형 등 다양한 형태의 방충설비 영상을 수집하였으며, 탄성 변형, 좌우 반전, 색상 변환 및 기하학적 변환을 통해 영상을 증강시킨 다음 제안한 딥러닝 네트워크를 학습하였다. 기존의 세분화 모델인 VGG16-Unet과 비교하여 제안한 모델의 세분화 성능을 검증하였으며, 그 결과 본 시스템이 IoU 84%, 조화평균 90% 이상으로 정밀하게 실시간으로 세분화할 수 있음을 확인하였다. 제안한 방충설비 세분화 시스템의 현장적용 가능성을 검증하기 위하여 국내 항만 시설물에서 촬영된 영상을 기반으로 학습을 수행하였으며, 그 결과 기존 세분화 모델과 비교하였을 때 우수한 성능을 보이며 정밀하게 방충설비를 감지하는 것을 확인하였다.

미세먼지 예측 성능 개선을 위한 시공간 트랜스포머 모델의 적용 (Application of spatiotemporal transformer model to improve prediction performance of particulate matter concentration)

  • 김영광;김복주;안성만
    • 지능정보연구
    • /
    • 제28권1호
    • /
    • pp.329-352
    • /
    • 2022
  • 미세먼지는 폐나 혈관에 침투해 각종 심장 질환이나 폐암 등의 호흡기 질환을 일으키는 것으로 보고되고 있다. 지하철은 일 평균 천만 명이 이용하는 교통수단으로, 깨끗하고 쾌적한 환경조성이 중요하나 지하터널을 통과하는 지하철의 운행 특성과 터널에 갇힌 미세먼지가 열차 풍으로 인해 지하역사로 이동하는 등의 문제로 지하역사의 미세먼지 오염도는 높은 것으로 나타나고 있다. 환경부와 서울시는 지하역사 공기질 개선대책을 수립하여 다양한 미세먼지 저감 노력을 기울이고 있다. 스마트 공기질 관리 시스템은 공기질 데이터 수집 및 미세먼지 농도를 예측하여 공기질을 관리하는 시스템으로 미세먼지 농도 예측 모델이 중요한 구성 요소이다. 그동안 시계열 데이터 예측에 관한 다양한 연구가 진행되어왔지만, 지하철 역사의 미세먼지 농도 예측과 관련해서는 통계나 순환신경망 기반의 딥러닝 모델 연구에 국한되어 있다. 이에 본 연구에서는 시공간 트랜스포머를 포함한 4개의 트랜스포머 기반 모델을 제안한다. 서울시 지하철 역사의 대합실을 대상으로 한 시간 후의 미세먼지 농도 예측실험을 수행한 결과, 트랜스포머 기반 모델들의 성능이 기존의 ARIMA, LSTM, Seq2Seq 모델들에 비해 우수한 성능을 나타냄을 확인하였다. 트랜스포머 기반 모델 중에서는 시공간 트랜스포머의 성능이 가장 우수하였다. 데이터 기반의 예측을 통하여 운영되는 스마트 공기질 관리 시스템은 미세먼지 예측의 정확도가 향상될수록 더욱더 효과적이고 에너지 효율적으로 운영될 수 있다. 본 연구 결과는 스마트 공기질 관리 시스템의 효율적 운영에 기여할 수 있을 것으로 기대된다.