• Title/Summary/Keyword: Train Performance

Search Result 1,494, Processing Time 0.036 seconds

Structural health monitoring-based dynamic behavior evaluation of a long-span high-speed railway bridge

  • Mei, D.P.
    • Smart Structures and Systems
    • /
    • v.20 no.2
    • /
    • pp.197-205
    • /
    • 2017
  • The dynamic performance of railway bridges under high-speed trains draws the attention of bridge engineers. The vibration issue for long-span bridges under high-speed trains is still not well understood due to lack of validations through structural health monitoring (SHM) data. This paper investigates the correlation between bridge acceleration and train speed based on structural dynamics theory and SHM system from three foci. Firstly, the calculated formula of acceleration response under a series of moving load is deduced for the situation that train length is near the length of the bridge span, the correlation between train speed and acceleration amplitude is analyzed. Secondly, the correlation scatterplots of the speed-acceleration is presented and discussed based on the transverse and vertical acceleration response data of Dashengguan Yangtze River Bridge SHM system. Thirdly, the warning indexes of the bridge performance for correlation scatterplots of speed-acceleration are established. The main conclusions are: (1) The resonance between trains and the bridge is unlikely to happen for long-span bridge, but a multimodal correlation curve between train speed and acceleration amplitude exists after the resonance speed; (2) Based on SHM data, multimodal correlation scatterplots of speed-acceleration exist and they have similar trends with the calculated formula; (3) An envelope line of polylines can be used as early warning indicators of the changes of bridge performance due to the changes of slope of envelope line and peak speed of amplitude. This work also gives several suggestions which lay a foundation for the better design, maintenance and long-term monitoring of a long-span high-speed bridge.

Verification of High Speed Performance for the Electronic Pedal using a Rotor (회전체를 이용한 전자페달의 고속 성능 검증)

  • KIM, Yong-Kyu;GO, Jun-Young;YOON, Yong-Ki;KIM, Ju-Yeop;LEE, Jong-Hyun
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.65 no.8
    • /
    • pp.1450-1456
    • /
    • 2016
  • In this paper, we have checked a method of performance evaluation for electronic pedal, which is a core technology of HBD for detecting the axle temperature of high-speed train. As it is practically impossible to conduct train speed test of 500 km/h, we utilize a high speed rotor for evaluating high speed performance of the electronic pedal instead. According to this method, we found that the measurement results by the velocity measuring instrument is similar with the ones from this research through the high speed rotor. In conclusion, it will be possible to conduct reliability evaluation for high speed performance for Beacon, Balise and RFID, which are utilized for transmitting vital information of train control systems through using the rotor.

Sound Insulation Performance of the Layered Structure of the Next Generation High Speed Train (차세대 고속철도 차량 적층 구조의 차음성능)

  • Lee, Jung-Hyeok;Kim, Seock-Hyun
    • Proceedings of the KSR Conference
    • /
    • 2011.05a
    • /
    • pp.326-331
    • /
    • 2011
  • Aluminum extruded panel used in a high speed train shows high stiffness, however, its sound insulation performance is remarkably decreased by local resonance phenomena. In this paper, improvement strategy of the sound insulation performance is proposed for the floor extruded panel used in HEMU-400x, 400km/h class next generation high speed train under development, and the improvement effect is verified by experiment. Aluminum extruded panel specimen for the floor is manufactured and urethane foam is installed in the core of the panel. Based on ASTM E2249-02, intensity transmission loss is measured and the improvement effect in local resonance frequency band is verified. Finally, improvement effect of the sound insulation performance is estimated on the layered floor structure including the foamed aluminum panel.

  • PDF

The VR based running performance visualization of the magnetic levitation train (가상현실 기반 자기부상열차 주행성능 가시화)

  • Cha, Moo-Hyun;Lee, Han-Min;Han, Hyung-Suk
    • Proceedings of the KSR Conference
    • /
    • 2006.11a
    • /
    • pp.135-144
    • /
    • 2006
  • To investigate various running performances of the magnetic levitation train systematically, the performance evaluation system based on Modeling & Simulation(M&S) technology is demanded essentially When the VR(virtual reality) techniques are involved, we can not only evaluate the M&S results more effectively and realistically, but also make optimum engineering decision. At the viewpoint of visualization of core engineering data like the train's running performance, there are no many cases of study which provide optimum decision information with the maximized reality and immersion environments through computer user interactions. In this study, the running performance simulation system which provides the VR based 3-dimensional visual information from the M&S results is being developed.

  • PDF

Sound Insulation Performance of the Side Layered Panels in the Next Generation High Speed Train (차세대 고속철도 차량 측면 적층재의 차음성능)

  • Lee, Joong-Hyeok;Lee, Ho-Jin;Park, In-Seok;Kim, Seock-Hyun
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2011.10a
    • /
    • pp.457-462
    • /
    • 2011
  • The sidewall of the HEMU-400x consists of two parts. One is the multi-layered structure including aluminium extruded panel and the other is the double glazed window. When the train runs in a tunnel, the equivalent sound insulation performance of the side wall significantly influences the internal noise levels. In aspect of the sound insulation strategy, it is important to make two parts have similar performance. In this study, the intensity sound transmission loss (ITL) is measured on the specimens of the two parts. Mass law deviation (MLD) is considered in order to compare the sound insulation performance of the two parts in respect of the weight. Contribution of each part to the sound insulation is analyzed and the sound insulation strategy is investigated to reduce the interior noise.

  • PDF

Design and Performance Study of Propulsion System for Korean High Speed Train (한국형 고속전철의 추진시스템 설계 및 성능 연구)

  • 박광복;김현철
    • Proceedings of the KSR Conference
    • /
    • 1998.05a
    • /
    • pp.349-358
    • /
    • 1998
  • This study was carried out about the design and the performance study of propulsion system for Korean High Speed Train of maximum operating speed of 350km/h. The propulsion system was studied to two parts the formation of power transmission and the performance of traction system base on Korean-TGV. For maximum operating speed of 350km/h at Seoul-Pusan high speed line, the power of train should be have the remaining acceleration of 0.058m/s/s and the slopeability of 6%o. This performance study of propulsion system would be continued for defining of adhesion factor, friction factor and aerodynamic factor assumed to analysis and simulation.

  • PDF

Train Speed Control in Slope Area Using Infrared System (적외선 시스템을 이용한 경사 지역에서 열차 운행 속도 제어)

  • Sugiana, Ahmad;Sanyoto, Mulyo;Parwito, Parwito;Agrianto, Yanardian;Lee, Key Seo;Choy, Ick
    • The Journal of the Korea institute of electronic communication sciences
    • /
    • v.11 no.6
    • /
    • pp.635-644
    • /
    • 2016
  • Train speed control is a vital part of train protection to build safe movement at an operation track. There is a special condition of track that needs more attention to protect the train, for example in slope area. Moreover, in developing country with vandalism problem, it requires to install minimalized equipment on the trackside. In addition, in tropical country, on tracksides it will be potentially pooling water that influences to the performance of trackside equipment. To address these problems, we propose the train speed control for slope area using infrared system. By installing on the pole configuration, the system offers a less challenging, economically sensible, minimalized installation of equipment on the trackside and reliability for heavy rain environment. This paper concentrates on the controlling train speed and measurement performance evaluation in slope area. The proposed train speed control system can monitor and control the speed in sloping area with maximum 3.6% and controlled speed about 20 km per h.

Economical run strategy for Korea High Speed Train Prototype (한국형 고속전철 경제운전 전략)

  • Lee Tae-Hyung;Park Choon-Soo
    • Proceedings of the KSR Conference
    • /
    • 2004.06a
    • /
    • pp.1381-1385
    • /
    • 2004
  • This paper presents a modelling methodology using fuzzy logic and train performance simulation for determining an economical running pattern for a high speed train which minimizes energy consumption under an given trip margin. The economical running pattern is defined with an economical maximum speed in traction phase, a speed at the end of coasting. As a case study, the simulation is carried out for an economical run of korea high speed train prototype, and the results of fuzzy model described.

  • PDF

Design of Train Driving Simulator (철도차량 운전자교육을 위한 훈련용 시뮬레이터의 설계)

  • Lee Ji-Sun;Park Sung-Ho;Choi Jong-Muk
    • Proceedings of the KSR Conference
    • /
    • 2005.05a
    • /
    • pp.175-180
    • /
    • 2005
  • As the high performance computer system increases, improving of reality and usefulness causes the virtual environment of simulator to be used widely as training and assessment tool. Although some domestic companies have developed train driving simulators since about mid of 1990s, accumulation of technology and experience is not yet sufficient compared to foreign makers. This paper describes system composition, training and assessment regimes for high level train driving simulator. When the subsystems are designed, comprehension of train system is emphasized and the functions that simulator should provide are discussed.

  • PDF

Confirmation System of Feasibility of Train Position Through Tachometer and Balise (타코미터와 발리스를 통한 열차 위치 타당성 확인 시스템)

  • Oh, Kwi-Jin;Lee, Jin-Haeng
    • Proceedings of the KSR Conference
    • /
    • 2009.05a
    • /
    • pp.472-475
    • /
    • 2009
  • Nowadays, Short headway is a requirement of Signaling System applied to subway and Light Rail Transit (LRT) being constructed in Korea. To satisfy this Systematic Requirement, the accuracy of train position information on the line is one of the main element to improve ATC system safety and performance. On-board ATC system performs feasibility of Train Position as comparing data from balise installed along the track with data from tachometer installed at both axles of train.

  • PDF