• Title/Summary/Keyword: Train Operation Simulation

Search Result 194, Processing Time 0.029 seconds

A Case study on the plan for the ESC integrating optimized train operation system for Fire & power failure accident in subway (도시철도 화재$\cdot$단전시 최적 열차운행을 위한 통합운영체계 구축방안에 관한 연구)

  • Kim Young-Wook;Choi Se-Wan;Kim Young-Kyu
    • Proceedings of the KSR Conference
    • /
    • 2004.10a
    • /
    • pp.1185-1192
    • /
    • 2004
  • Recently heavy traffic is getting worse because increasing population of transportation in urban area. In order to solve this problem. subway is realized with high speed, high density, highly efficiency. When fire accident happened in Dae-Gu subway in February 2003, there happened loss of people and lots of damage because of not being able to control even though fire alarm which was set up in the station rang. This thesis has constructed a simulation integrating operation system using a Database construction, operating program analysis in order to build up the most efficient train operation system. The result of simulation integrating operation system with emergency virtual situation like station and train fire, train failure, power line failure, all trains running on the rail were secured safety by train operation control system. With integrating operation of each train control system, train system, power system, machine facility system, the most efficient integrating operation system should have been constructed at the time the subway fire and power failure broke out.

  • PDF

Development of a Train Performance Simulation S/W for The Performance Analysis of High Speed Railway System(2) (고속전철 시스템 성능해석을 위한 열차 주행시뮬레이션 S/W 개발(2))

  • Lee, Tae-Hyung;Hyun, Seung-Ho;Chung, Heuing-Chai;Hwang, Hee-Soo
    • Proceedings of the KIEE Conference
    • /
    • 2000.07b
    • /
    • pp.1381-1383
    • /
    • 2000
  • A multi-train operation simulation software is under development, in this G7 Project for a High Speed Train System, to simulate the running performance, power consumption, signalling and operation. In the first stage, a Train Performance Simulation (TPS) software is introduced in this paper. This is a core module of whole system and gives some parameters of a train, e.g., its position, speed traction and braking power and electric power system state, etc. In this paper, calculation technique was used for voltage drop at the train's positions and major posts along the catenary line. The final program will be used as an evaluation tool for system performance in constructing a new line or introducing a new train system.

  • PDF

Train Performance Simulation for Korea High Speed Train (한국형 고속전철 개발차량 열차성능 해석)

  • 이태형;박춘수;목진용
    • Proceedings of the KSR Conference
    • /
    • 2003.10a
    • /
    • pp.199-203
    • /
    • 2003
  • Computer aided simulation is becoming an essential part in planning, design, and operation of railway systems. To determine the adequate performance and specification of railway system, it is necessary to calculate rotting stock's performance such as distance, speed, power etc when train's running. This paper presents result of train performance simulation using the program that developed in advance for Korea high speed train. To verify result of simulation, we have compared that with experiment data.

  • PDF

A Study on the Efficiency of Energy Storage System Applied to the Power Traction System of DC Electric Railway (직류전기철도에서 운행시격에 따른 에너지저장장치의 효율에 관한 연구)

  • Kim, Sung-Dae;Choi, Kyu-Hyoung
    • Proceedings of the KSR Conference
    • /
    • 2011.10a
    • /
    • pp.754-760
    • /
    • 2011
  • In the DC traction system, a large load current of electric railcar leads to a voltage drop when a vehicle starts, and the regenerative power generated by brake system increases the catenary voltage. To minimize the voltage fluctuation during the train operation and make use of the regenerative power, several types of energy storage systems are being studied. The energy storage system that is being recently introduced consists of the supercapacitors for energy storage and the bi-direction DC/DC converter for charge/discharge control. The efficiency of the energy storage system depends on the train operation pattern. In this paper, the operation efficiency of the energy storage system was quantitatively analyzed via simulation study taking consideration of the train operation patterns. The simulation was conducted changing the headway of trains with the energy storage system that uses the bi-direction DC/DC converter and supercapacitor. The simulation results showed that the operation efficiency of the energy storage system increases as the headway increase.

  • PDF

A Study on Improvement of Operation Efficiency of Magnetic Levitation Train Using Linear Induction Motor

  • Park, Sang Uk;Zun, Chan Yong;Park, Doh-Young;Lim, Jaewon;Mok, Hyung Soo
    • International Journal of Railway
    • /
    • v.9 no.2
    • /
    • pp.41-45
    • /
    • 2016
  • In this paper, a study on the efficiency improvement of the magnetic levitation train using the LIM (Linear Induction Motor) was presented. The maglev train has the advantage of being environmentally friendly since much less noise and dust is produced. However, due to structural limitation, compared to a rotating induction motor, linear induction motor, the main propulsion engine of the maglev train has a relatively greater air gap and hence has the lower operation efficiency. In this paper, the relationship between the operating condition of the train and the slip frequency has been investigated to find out the optimum slip frequency that might improve the efficiency of the magnetic levitation train with linear induction motor. The slip frequency is variable during the operation by this relationship only within a range that does not affect the levitation system of the train. After that, the comparison of the efficiency between the conventional control method with the slip frequency fixed at 13.5[Hz] and the proposed method with the slip frequency variable from 9.5[Hz] to 6.5[Hz] has been conducted by simulation using Simplorer. Experiments of 19.5[ton] magnetic levitation trains owned by Korea Institute of Machinery and Materials were carried out to verify the simulation results.

Improvement of Service Quality for Urban Railway Operations Using Simulation (시뮬레이션을 이용한 도시철도 운행 서비스품질 개선에 관한 연구)

  • Kim, DongHee;Lee, HongSeob
    • Journal of the Korean Society for Railway
    • /
    • v.20 no.1
    • /
    • pp.156-163
    • /
    • 2017
  • In the major operation sections of the urban railway, there has been habitual delay, and delay propagation; another problem is the increase of crowds and of inconvenience to passengers. The urban railway has different characteristics from rural railways, such as uncertainty of demand and irregularity of train operation. In urban railways, recently, operators manage quality indicators of service using operation results, such as the delay of train operation and the congestion of trains. However, because the urban railway has characteristics in which demand, passenger behavior, and train operation mutually affect each other, it is difficult to express the quality of service that passengers actually feel. In this paper, we suggest a quality indicator of service from the viewpoint of passengers, and present a demand responsive multi-train simulation method to predict dynamic dwell time and train operation status; we also use simulation results to consider changes in the quality indicator of service.

Evaluation of Train Overhaul Maintenance Capacity for Rolling Stock Depot Using Computer Simulation Method (시뮬레이션 기법을 활용한 열차 차량기지의 중정비 검수 용량 평가)

  • Jang, Seong-Young;Jeon, Byoung-Hack;Lee, Won-Young;Yoo, Jae-Kyun
    • Journal of the Korean Society for Railway
    • /
    • v.10 no.2 s.39
    • /
    • pp.231-242
    • /
    • 2007
  • As railroad industry faces the new Renaissance era, effective and efficient maintenance methods for rolling stock operation are required with advanced railroad technology. All kinds of railroad systems such as high-speed long-distance train, metropolitan mass transit and light rail require systematic maintenance technology in order to maintain the safe railroad operation. Simulation models for regular operations of the example maintenance center are developed. In this study, standard maintenance procedures, layout, equipments, and number of workers of Siheung Metropolitan Railroad Maintenance Rolling Stock Depot are considered. The proposed simulation models are developed using simulation package ARENA. After simulation, four types of observations are analyzed. First, the bottleneck operation is identified. Second, the relationship between maintenance center size, number of workers and cycle time is analyzed. Third, the scheduling performances between PERT/CPM and Critical Chain Project Management(CCPM) are compared. Lastly, the simulation results according to worker's working coverage shows expanding the worker's coverage decreases the cycle time and increases throughput per train. However, workers are to be fully trained to do multiple skill work.

A Study on the Train Operation Optimization for Energy Saving (친환경 에너지 절약을 위한 열차운전 최적화 연구)

  • Choi, Ik-Sik;Jang, Woo-Jin;Choi, Kyu-Hyoung
    • Proceedings of the KSR Conference
    • /
    • 2011.10a
    • /
    • pp.1059-1065
    • /
    • 2011
  • In line with the expansion of electric railway, reducing carbon emission and optimal train operation are required by economical, eco-friendly and efficient management. Most of the energy consumption in electric railway is consumed by train operation. So it is important that minimize the energy consumption in train operation. An analysis of the operation performance of the new model vehicle which in South Korea, Korail introduced shows that the energy consumption is different in line with the skill level of the engine driver. In this study, the know-how of train operation of a skilled engine driver is systematized by using artificial intelligence, and the technique which supports engine drivers with train operation was offered. As a result of applying in South Korea, the Gyeongbu line by using simulation, it confirmed that the maximum 20% can reduce the energy consumption in comparison with unskilled engine drivers in case of applying the Expert System.

  • PDF

A Simulation Study on the Energy Saving Strategy of Train Operation (에너지절약을 위한 열차운행전략에 관한 시뮬레이션 연구)

  • Joo, Young-Bhok;Choi, Kyu-Hyoung
    • Proceedings of the KSR Conference
    • /
    • 2007.11a
    • /
    • pp.1594-1598
    • /
    • 2007
  • Energy saving is an important topic for each heavy user of the power system, including railway operators. Therefore, four strategy of train operations studied that maximum speed reduction, reduced acceleration rate, anticipatory coasting, and saw-tooth coasting for energy saving. The Simulation model of the study used to investigate the performance of a railway system, and it was used to study the effect of energy saving strategies for the train operation. The Study investigate train operation strategy for energy saving, investigate the effect of strategy, and find the energy optimization of acceleration, coasting, braking section used Run-Curve simulator from train data.

  • PDF

A study on dynamic simulation for estimation of leakage current (누설전류 예측을 위한 동적 시뮬레이션에 관한 연구)

  • Jung, Ho-Sung;Han, Moon-Seob;Park, Young;Chung, Sang-Gi;Kwon, Sam-Young;Lee, Jea-Bong
    • Proceedings of the KIEE Conference
    • /
    • 2008.11a
    • /
    • pp.250-252
    • /
    • 2008
  • DC traction system generates leakage current because running rails are used in return circuit. And it is very important to estimate the leakage current to the train operation situation. Therefore this paper presents dynamic simulation technique that is very similar to the real operation situation using TPS and PSCAD/EMTDC. For this we model DC traction system included in DC substation, variable feeding circuit model and variable train model. And we extract train location and power using TPS program and use these data for dynamic simulation. Finally we can estimate leakage current to the various operation condition using dynamic simulation.

  • PDF