• Title/Summary/Keyword: Train Collision

Search Result 124, Processing Time 0.025 seconds

An Evaluation of Crashworthiness for the final design of the KHST power-car (한국형 고속전철 동력차 최종설계의 충돌안전도 평가 연구)

  • 노규석;구정서
    • Proceedings of the KSR Conference
    • /
    • 2002.10a
    • /
    • pp.38-46
    • /
    • 2002
  • This paper evaluates crashworthiness of KHST carbodies under the SNCF accident scenario (collision against a movable rigid mass of 15 tons at 110 kph) and the scenario of train-to-train collision at 30 kph. The numerical results show that the final design of the KHST power-car doesn't have a good response on crashworthiness. So an improved design has been suggested for it. The improved design has shown good performances in the viewpoint of energy absorption and survival space at several numerical simulations, such as the accident collided against a deformable dump truck of 15 tons at 110 kph, the driver's dummy analysis, and the accident of train-to-train collision for the first three units at 30 kph.

  • PDF

A Derivation of the Standard Design Guideline for Crashworthiness of High Speed Train with Power Cars (동력집중식 고속열차의 충돌안전도 표준설계 가이드라인 도출)

  • Kim, Geo-Young;Cho, Hyun-Jik;Koo, Jeong-Seo;Kwon, Tae-Soo
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.16 no.6
    • /
    • pp.157-167
    • /
    • 2008
  • Through this study, the standard design guidelines for high speed train with power cars have been derived to meet the crashworthiness requirements of the Korean rollingstock safety regulation. The crashworthiness regulation requires some performance requirements for two heavy collision accident scenarios; a train-to-train collision at the relative speed of 36 kph, and a collision against a standard deformable obstacle of 15 ton at 110 kph. A standard high speed train composition was defined as 2PC-2ET-6T with 17ton axle load, similar to KTX-2 for the Honam express line. Using theoretical and numerical analyses, some crashworthy design guidelines were derived in terms of mean crush forces and energy absorptions for major crushable components. The derived design guidelines were evaluated and improved using one dimensional spring-mass dynamic simulation. It is shown from the simulation results that the suggested design guidelines can easily satisfy the domestic crashworthiness requirements.

Collision Analysis of the Full Rake TGV-K on Crashworthiness (TGV-K 전체 차량의 충돌안전도 해석 연구)

  • Koo, Jeong-Seo;Song, Dahl-Ho
    • Journal of the Korean Society for Railway
    • /
    • v.1 no.1 s.1
    • /
    • pp.1-9
    • /
    • 1998
  • Described in this paper is the result of a study on collision analysis of TGV-K using 1-dimensional model for crashworthy design. Crashworthy design of the front end is very important because majority of the impact energy (more than 70%) is absorbed by the crush of the front end when the train is collided with an obstacle like a tank lorry. Guideline for the crashworthy design can be described from the collision analysis of the whole train using a 1-dimensional model. Since the headstock of TGV-K is not designed in a crashworthy point of view, a conceptual design of the headstock to improve crashworthiness is suggested and evaluated using 1-dimensional collision analysis. The suggested design, which adopts an energy absorber and a crashworthy headstock, shows a good behaviour on the accident scenario of SNCF (collision at 110 km/h against a movable rigid mass of 15 ton).

  • PDF

Crush Analysis of Tilting Train Express M-Car Initial Design (한국형 고속틸팅차량 구동차 설계초안의 충돌압괴특성 분석)

  • Jung Hyun-Seung;Koo Jeong-Seo;Kwon Tae-soo
    • Proceedings of the KSR Conference
    • /
    • 2004.06a
    • /
    • pp.738-743
    • /
    • 2004
  • In this paper, the crush characteristic of the tilting train express M-car was estimated under a head-on collision scenario. The car body was divided into three parts - front, middle, and rear. For each part, crush-force relation was evaluated numerically using LS-DYNA 3-diementional shell element analysis. This result will be used for one-dimensional collision analysis of the full train rake.

  • PDF

A Study on the Risk-Management Based of Relief Train Operation (위험통제기반의 구원열차운전에 관한 연구)

  • Jeon, Young Seok;Lee, Hi Sung
    • Journal of the Korean Society of Safety
    • /
    • v.29 no.4
    • /
    • pp.191-198
    • /
    • 2014
  • In the event of continued train operation being impossible as the result of a breakdown, it will be essential to dispatch a relief train to recover the broken down train. Operation of relief train carries with the risk of collision in the process of connection with broken down train. The present study looks at the suitability of risk management procedures and associated problems in the light of case studies of relief train operation, and of national legal standards and railroad company regulations. It looks at appropriate methods of risk management and the problems that can arise. Based on the study a method is proposed of operating the relief train which is consistent with appropriate risk management. The proposed method will improve the safety of relief train operation, It is hoped that the results of the study will be reflected in relevant laws and operating company regulations, and so contribute to enhancing the overall level of railroad safety.

A Study on the Techniques to Evaluate Carbody Accelerations after a Train Collision (충돌 후 열차의 차체 가속도 평가 기법 연구)

  • Kim, Joon-Woo;Koo, Jeong-Seo
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.20 no.5
    • /
    • pp.477-485
    • /
    • 2010
  • In this study, we suggested several approaches to evaluate the collision acceleration of a carbody under the article 16 of the Korean rolling stock safety regulations. There are various methods to evaluate the rigid body accelerations such as the displacement comparison method by double integration of filtered acceleration data, the velocity comparison method by direct integration of filtered acceleration data, and the analysis method of a velocity-time curve. We compared these methods one another using the 1D dynamic simulation model of Korean high-speed EMU composed of nonlinear springs or bars, dampers, and masses. From the simulation results, the velocity-time curve analysis method and the displacement comparison method are recommended to filter high frequency oscillations and evaluate the maximum and average accelerations of a carbody after a train collision.

Collision Analysis of Full Rake TGV-K for crashworthy design (고속전철 TGV-K 전체 차량에 대한 충돌안전도 해석 연구)

  • 구정서;송달호
    • Proceedings of the KSR Conference
    • /
    • 1998.05a
    • /
    • pp.361-368
    • /
    • 1998
  • Described in this paper is the result of a study on collision analysis of TGV-K using 1-dimensional model for crashworthy design. Crashworthy design of the front end is very important because majority of the impact energy (more than 70%) is absorbed by the crush of the front end when the train is collided with an obstacle like a tank lorry. Guideline for the crashworthy design can be described from the collision analysis of the whole train using a 1-dimensional model. Since the headstock of TGV-K is not designed in a crashworthy point of view, a conceptual design of the headstock to improve crashworthiness is suggested and evaluated using 1-dimensional collision analysis. The suggested design, which adopts an energy absorber and a crashworthy headstock, shows a good behaviour on the accident scenario of SNCF (collision at 110 km/hr against a movable rigid mass of 15 ton).

  • PDF

Analysis on the Crashworthiness of the Full Rake Korean Electric Multiple Unit Train (한국형 표준전동차 전체차량의 충돌안전도 해석 연구)

  • 구정서;김동성;조현직;권태수;최성규
    • Journal of the Korean Society for Railway
    • /
    • v.3 no.1
    • /
    • pp.27-33
    • /
    • 2000
  • In this paper, numerically evaluated is the crashworthiness of the new design of the standard Korea Electric Multiple Unit Train(K-EMU)[developed by the Korea Railway Research Institute]. The 4-car consist of K-EMU is analyzed under collision conditions such as normal coupling, heavy shunting, light collision and heavy collision to collide against another stationary one at 5 kph, 10 kph, 25 kph and 32 kph, respectively. Energy absorbing capacity of its draftgear commercially available in the market and to be equipped in K-EMU is evaluated under each collision condition. Analytical results show that draftgear only is not enough to provide necessary energy absorbing capacity. It is therefore concluded that additional energy absorbers like mechanical fuses should be adopted to improve the crashworthiness of K-EMU.

  • PDF

Derivation of the Standard Design Guidelines for Crashworthiness of the High-Speed EMU (동력분산형 고속전철의 충돌안전도 설계 가이드라인 도출)

  • Kim, Geo-Young;Cho, Hyun-Jik;Koo, Jeong-Seo
    • Proceedings of the KSR Conference
    • /
    • 2008.06a
    • /
    • pp.772-779
    • /
    • 2008
  • Through this study, standard design guidelines for the high speed EMU have been derived to meet the crashworthiness requirements of the Korean rollingstock safety regulation. The crashworthiness regulation requires some performance requirements for two heavy collision accident scenarios; a train-to-train collision at the relative speed of 36 kph, and a collision against a standard deformable obstacle of 15 ton at 110 kph. The complete train set will be composed of 2TC-6M with 13 ton axle load, different from KTX with the power car of 17 ton axle load. Using theoretical and numerical analyses, some crashworthy design guidelines were derived in terms of mean crush forces and energy absorptions for main crushable structures and devices. The derived design guidelines were evaluated and improved using one dimensional spring-mass dynamic simulations. It is shown from the simulation results that the suggested design guidelines can easily satisfy the domestic crashworthiness requirements.

  • PDF

A Study on Full-rake Crashworthy Design of Tilting Train Express (TTX 전체차량 충돌안전도 설계방안에 관한 연구)

  • Jung Hyun-Seung;Kwon Tae-Soo;Koo Jeong-Seo
    • Proceedings of the KSR Conference
    • /
    • 2004.10a
    • /
    • pp.646-651
    • /
    • 2004
  • Crashworthy design of a train is a systematic approach to ensure the safety of passengers and crews in railway transportation for the prescribed accident scenarios. This approach needs new structural arrangements and designs to absorb higher levels of impact energy in a controlled manner and interior designs to minimize passenger injuries. In this paper, crashworthy design approach is applied to the tilting train express (TIX) design which is newly being developed. Based on a head-on collision and a level crossing collision scenarios, the crash behaviors of a TTX design candidate arc evaluated numerically using the finite element method. Finally, design alternatives which show better crashworthy performances are proposed and verified through the full-rake collision simulations.

  • PDF